E := T1 (“ is life-permitting.”)
E’ := (“Some universe is life-permitting.”)
M := m>>0 (“There are many universes.” – the multiverse hypothesis)
White claims that while there being many universes increases the probability that there is a life-permitting universe, P(E’|M) > P(E’|¬M), it is not the case that there being many universes increases the probability that our universe is life-permitting. That is, P(E|M) = P(E|¬M) = 1/n. The argument White gives for this is that
the probability of [E, i.e. the claim that instantiates T1] is just 1/n, regardless of how many other universes there are, since ’s initial conditions and constants are selected randomly from a set of n equally probable alternatives, a selection which is independent of the existence of other universes. The events which give rise to universes are not causally related in such a way that the outcome of one renders the outcome of another more or less probable. They are like independent rolls of a die. ((White 2000), pp. 262-3)
Since we should conditionalize on the most specific information we have when evaluating the support for the multiverse hypothesis, and since E is more specific than E’, White concludes that our knowledge that our universe is life-permitting gives us no reason to think there are many universes.
Share with your friends: |