Curriculum Vitae Dr. Dimitrios K. Tzovaras



Download 1.39 Mb.
Page11/18
Date05.05.2018
Size1.39 Mb.
#47689
1   ...   7   8   9   10   11   12   13   14   ...   18
J35] Abie, Habtamu, Bent Foyn, Jon Bing, Bernd Blobel, Peter Pharow, Jaime Delgado, Stamatis Karnouskos, Olli Pitkanen, and Dimitrios Tzovaras. "The need for a digital rights management framework for the next generation of e-government services." Electronic Government, an International Journal 1, no. 1 (2004): 8-28. (41 citations)


  1. Al-Sebie, M. (2015). Technical challenges facing integration e-government systems: an empirical study. Electronic Government, an International Journal, 11(3), 133-153.

  2. Schafer, B., Komuves, D., Zatarain, J. M. N., & Diver, L. (2015). A fourth law of robotics? Copyright and the law and ethics of machine co-production. Artificial Intelligence and Law, 23(3), 217-240.

  3. Hashemkhani Zolfani, S., Sedaghat, M., & Rad, M. D. (2014). E-government diffusion in Iran: a public sector employees’ perspective. International Journal of Business Information Systems, 15(2), 205-221.

  4. Mishra, D., & Mukhopadhyay, S. (2014). A privacy enabling content distribution framework for digital rights management. International Journal of Trust Management in Computing and Communications, 2(1), 22-39.

  5. Merhi, Mohammad I., and Kai S. Koong. "E–government effectiveness: assessment of contributing governments' ICT usage factors." International Journal of Business and Systems Research 7.1 (2013): 1-24.

  6. Drigas, Athanasios S., and Lefteris Koukianakis. "E-Government Applications for the Information Society." (2013).

  7. Merhi, M. I., & Koong, K. S. (2013). E–government effectiveness: assessment of contributing governments' ICT usage factors. International Journal of Business and Systems Research, 7(1), 1-24.

  8. Irani, Z., & Love, P. (Eds.). (2012). Evaluating information systems. Routledge.

  9. Kamal, M. M., Themistocleous, M., & Morabito, V. (2012). Evaluating e-Government infrastructure through enterprise application integration (EAI). Evaluating Information Systems, 302.

  10. Khasawneh, S., Jalghoum, Y., Harfoushi, O., & Obiedat, R. (2011). E-Government Program in Jordan: From Inception to Future Plans. International Journal of Computer Science Issues, 8(4), 568-582.

  11. Al-Sebie, M. (2011, June). The Stages of eGovernment: Correlation Between Characteristics That Affect eGovernment System. In The Proceedings of the 11th European conference on eGovernment (p. 36). Academic Pub. International.

  12. Azizan, N. (2011). Critical success factors for knowledge transfer via Australian and Malaysian Government education websites: a comparative case study.

  13. Khalil, O. E. (2011). e-Government readiness: Does national culture matter?. Government Information Quarterly, 28(3), 388-399.

  14. Sweisi, N. A. A. (2010). E-government services: an exploration of the main factors that contribute to successful implementation in Libya (Doctoral dissertation, University of Portsmouth).

  15. Li, Y., & Deng, S. L. (2009, September). Research on Automatic Government Process Remodeling in E-Government. In Management and Service Science, 2009. MASS'09. International Conference on (pp. 1-5). IEEE.

  16. McMillan, S. J. (2009). Government electronic and mobile service delivery: a success factors model (Doctoral dissertation, Victoria University).

  17. Li, Y. (2009, August). Rediscovery of government process model in e-government. In Fuzzy Systems and Knowledge Discovery, 2009. FSKD'09. Sixth International Conference on (Vol. 7, pp. 351-356). IEEE.

  18. Al-Shafi, S. (2009). Factors affecting e-Government implementation and adoption in the State of Qatar. School of Information Systems, Computing and Mathematics.

  19. Drigas, A., & Koukianakis, L. (2009). Government Online: An E-Government Platform to Improve Public Administration Operations and Services Delivery to the Citizen. Visioning and Engineering the Knowledge Society. A Web Science Perspective, 523-532.

  20. Tsai, N., Choi, B., & Perry, M. (2009). Improving the process of E-Government initiative: An in-depth case study of web-based GIS implementation.Government Information Quarterly, 26(2), 368-376.

  21. Tsai, W. H., Purbokusumo, Y., Cheng, J. M. S., & Tuan, N. D. (2009). E-government evaluation: the case of Vietnam's provincial websites. Electronic Government, An International Journal, 6(1), 41-53.

  22. Kamal, M. M., Themistocleous, M., & Morabito, V. (2009, January). Justifying the decisions for EAI adoption in LGAs: a validated proposition of factors, adoption lifecycle phases, mapping and prioritisation of factors. In System Sciences, 2009. HICSS'09. 42nd Hawaii International Conference on (pp. 1-10). IEEE.

  23. Lee, S. H., Leem, J. H. H. C. S., & Kim, B. W. (2008). u-Government Portal Evaluation: A Framework and Case Study.

  24. Kamal, M. M., Themistocleous, M., & Elliman, T. (2008). Extending IT Infastructures in the Local Government Authorities Through Enterprise Application Integration.

  25. Richards, M., Adam, K., & Price, B. A. (2008). It's Okay To Be A Dog On The Internet–Privacy And Trust In e-Government. Relation, 10(1.114), 4220.

  26. Irani, Z., & Elliman, T. (2008). Creating social entrepreneurship in local government. European Journal of Information Systems, 17(4), 336-342.

  27. Lee, H., Irani, Z., Osman, I. H., Balci, A., Ozkan, S., & Medeni, T. D. (2008). Research note: toward a reference process model for citizen-oriented evaluation of e-government services. Transforming Government: People, Process and Policy, 2(4), 297-310.

  28. Liu, C. C., & Wang, H. J. (2007). Developing measures of digital capital and virtual value chain construction in job search websites. International Journal of Management and Enterprise Development, 4(1), 66-81.

  29. Al-Mashari, M. (2007). A benchmarking study of experiences with electronic government. Benchmarking: An International Journal, 14(2), 172-185.

  30. Tahinakis, P., Mylonakis, J., & Protogeros, N. (2006). The contribution of e-government to the modernisation of the Hellenic taxation system. Electronic Government, an International Journal, 3(2), 139-157.

  31. Walsh, P. E. (2006). E-payment: Cheque 21. International Journal of Electronic Finance, 1(2), 222-240.

  32. Von Lubitz, D., & Wickramasinghe, N. (2006). Key challenges and policy implications for governments and regulators in a networkcentric healthcare environment. Electronic Government, an International Journal, 3(2), 204-224.

  33. McMahon, R. A., & Bressler, L. (2005). E-government: do audits aid the netologically disadvantaged. Electronic Government, an International Journal, 2(4), 413-425.

  34. McMahon, R. A. (2005). E-government: effects on the netologically disadvantaged. Electronic Government, an International Journal, 2(4), 460-471.

  35. Becker, S. A. (2005). Potential trust barriers in US state e-government privacy policies. Electronic Government, An International Journal, 2(3), 334-352.

  36. Al-Sebie, M., & Irani, Z. (2005). Technical and organisational challenges facing transactional e-government systems: an empirical study. Electronic Government, An International Journal, 2(3), 247-276.

  37. Belanger, F., Carter, L. D., & Schaupp, L. C. (2005). U-government: a framework for the evolution of e-government. Electronic Government, an International Journal, 2(4), 426-445.

  38. Liu, C. C. (2005). Using e-governmental indicators to build virtual value chain. Electronic Government, An International Journal, 2(3), 277-291.

  39. Adam, K., Price, B., Richards, M., & Nuseibeh, B. (2005). A privacy preference model for pervasive computing. Proceedings of the Euro mGov 2005.

  40. Al-Sebie, M., Irani, Z., & Eldabi, T. (2005). Issues relating to the transaction stage of the e-government system. Electronic Government, an International Journal, 2(4), 446-459.

  41. Nikolopoulos, K., Patrikakis, C. Z., & Lin, B. (2004). Forecasting systems for e-government. Electronic Government, an International Journal, 1(4), 374-383.

[J39] P. Daras, D. Zarpalas, A. Axenopoulos, D. Tzovaras and M. G. Strintzis: "3D Shape-Structure Comparison Method for Protein Classification", IEEE/ACM Transactions on Computational Biology and Bioinformatics, Volume 3, Issue 3, pp. 193-207, July 2006. (34 citations)



  1. Gao, Yue, et al. "3-D Object Retrieval and Recognition With Hypergraph Analysis." Image Processing, IEEE Transactions on 21.9 (2012): 4290-4303.

  2. Wang, Jingyan, et al. "ProDis-ContSHC: learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval." BMC bioinformatics 13.Suppl 7 (2012): S2.

  3. Sukumar, N., et al. "Molecular Descriptors for Biological Systems."Computational Approaches in Cheminformatics and Bioinformatics (2012): 107-143.

  4. Liu, Yu-Shen, et al. "3DMolNavi: A web-based retrieval and navigation tool for flexible molecular shape comparison." BMC bioinformatics 13.1 (2012): 95.

  5. Mirceva, Georgina, et al. "Efficient Approaches for Retrieving Protein Tertiary Structures." IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 9.4 (2012): 1166-1179.

  6. Nanni, Loris, Sheryl Brahnam, and Alessandra Lumini. "Wavelet images and Chou’s pseudo amino acid composition for protein classification." Amino acids(2012): 1-9.

  7. Deformation Invariant Local Descriptors for Protein Surface Comparison, YL Tsai, HW Wang, TW Pai, WS Tzou… - Intelligent Systems and …, 2011 - actapress.com

  8. Liu, Y. S., Ramani, K., & Liu, M. (2011). Computing the inner distances of volumetric models for articulated shape description with a visibility graph. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(12), 2538-2544.

  9. Mirceva, G., & Davcev, D. (2011, September). SVM based approaches for classifying protein tertiary structures. In Data and Knowledge Engineering (ICDKE), 2011 International Conference on (pp. 1-7). IEEE.

  10. Ravichandran, L. (2011). Waveform Mapping and Time-Frequency Processing of Biological Sequences and Structures (Doctoral dissertation, ARIZONA STATE UNIVERSITY).

  11. Wang, J., Li, Y., Bai, X., Zhang, Y., Wang, C., & Tang, N. (2011). Learning context-sensitive similarity by shortest path propagation. Pattern Recognition, 44(10), 2367-2374.

  12. Wang, J., Li, Y., Zhang, Y., Tang, N., & Wang, C. (2011, May). Class conditional distance metric for 3D protein structure classification. In Bioinformatics and Biomedical Engineering,(iCBBE) 2011 5th International Conference on (pp. 1-4). IEEE.

  13. Wavelet images and Chou’s pseudo amino acid composition for protein classification, Loris Nanni, Sheryl Brahnam and Alessandra Lumini, Amino Acids, DOI: 10.1007/s00726-011-1114-

  14. Efficient Approaches for Retrieving Protein Tertiary Structures, Mirceva G, Cingovska I, Dimov Z, Davcev D., IEEE/ACM Trans Comput Biol Bioinform. 2011 Oct 17. [Epub ahead of print]

  15. Nanni, L., Shi, J. Y., Brahnam, S., & Lumini, A. (2010). Protein classification using texture descriptors extracted from the protein backbone image. Journal of Theoretical Biology, 264(3).

  16. Nanni, L., Brahnam, S., & Lumini, A. (2010). High performance set of PseAAC and sequence based descriptors for protein classification. Journal of Theoretical Biology, 266(1).

  17. Using diffusion distances for flexible molecular shape comparison, Yu-Shen Liu, Qi Li, Guo-Qin Zheng, Karthik Ramaniand William Benjamin, BMC Bioinformatics 2010, 11:480doi:10.1186/1471-2105-11-480, Published 24 September 2010

  18. A Protein Classifier Based on SVM by Using the Voxel Based Descriptor, Georgina Mirceva, Andreja Naumoski and Danco Davcev, Computer Science, Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, 2010, Volume 6086/2010, 640-648, DOI: 10.1007/978-3-642-13529-3_68

  19. Protein Classification Based on 3D Structures and Fractal Features, Georgina Mirceva, Zoran Dimov, Slobodan Kalajdziski and Danco Davcev, ICT Innovations, 2010, Part 2, 115-124, DOI: 10.1007/978-3-642-10781-8_13

  20. Paquet, E., & Viktor, H. L. (2009). Finding Protein Family Similarities in Real Time Through Multiple 3D and 2D Representations, Indexing and Exhaustive Searching. In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval-(KDIR 2009) (pp. 127-133).

  21. Jian-Yu, S. B. L. N., & Lumini, S. A. Local phase quantization texture descriptor for protein classification.

  22. TRIVODALIEV, K., KALAJDZISKI, S., & DAVCEV, D. (2009). A System for Protein Classification Based on Protein 3D Structure. In proceedings of The 5th international conference SETIT (pp. 22-26).

  23. Dimov, Z., Mirceva, G., & Davcev, D. Protein distance matrices comparison using sequence alignment techniques.

  24. 2009 Seventh International Workshop on Content-Based Multimedia Indexing, C Käs, H Nicolas, KWC Domain - computer.org

  25. 3D Model Retrieval Using Probability Density-Based Shape Descriptors, Ceyhun Burak Akgu¨ l, Bu¨ lent Sankur, Yu¨ cel Yemez, and Francis Schmitt, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 6, JUNE 2009

  26. IDSS: deformation invariant signatures for molecular shape comparison, Yu-Shen Liu, Yi Fang and Karthik Ramani, BMC Bioinformatics 2009, 10:157 doi: 10.1186/1471-2105-10-157, May 2009

  27. Fast SCOP Classification of Structural Class and Fold Using Secondary Structure Mining in Distance Matrix, Jian-Yu Shi1, and Yan-Ning Zhang, V. Kadirkamanathan et al. (Eds.): PRIB 2009, LNBI 5780, pp. 344–353, 2009. © Springer-Verlag Berlin Heidelberg 2009

  28. Three dimensional shape comparison of flexible proteins using the local-diameter descriptor, Yi Fang, Yu-Shen Liu and Karthik Ramani, BMC Structural Biology 2009, 9:29, doi:10.1186/1472-6807-9-29, May 2009

  29. Quantitative protein descriptors for secondary structure characterization and protein classification, Anton Lindström, Fredrik Pettersson and Anna Linusson, Chemometrics and Intelligent Laboratory Systems, Volume 95, Issue 1, 15 January 2009, Pages 74-85

  30. SGNG Protein Classifier by Matching 3D Structures, Georgina Mirceva, Andrea Kulakov, and Danco Davcev, E. Corchado et al. (Eds.): HAIS 2009, LNAI 5572, pp. 425–432, 2009. c_ Springer-Verlag Berlin Heidelberg 2009

  31. Capri/MR: Exploring Protein Databases from a Structural and Physicochemical Point of View, Eric Paquet, Herma L.Victor, Proceedings of the VLDB Endowment, Volume 1 ,  Issue 2  (August 2008) SESSION: Demonstrations: tuning, systems optimization, Pages 1504-1507  

  32. Feature Selection and Combination Criteria for Improving Accuracy in Protein Structure Prediction, Lin, K.-L.; Chun-Yuan Lin; Chuen-Der Huang; Hsiu-Ming Chang; Chiao-Yun Yang; Chin-Teng Lin; Chuan Yi Tang; Hsu, D.F.; NanoBioscience, IEEE Transactions on, Volume 6,  Issue 2,  June 2007 Page(s):186 – 196

  33. SHREC’07 - Protein Retrieval Challenge, Maja Temerinac, Marco Reisert and Hans Burkhardt, Proceedings of Shape Modelling, 2007

  34. Protein Classification by Matching 3D Structures, Slobodan Kalajdziski , Georgina Mirceva , Kire Trivodaliev , Danco Davcev, 2007 Frontiers in the Convergence of Bioscience and Information Technologies, Jeju Island, Korea , October 11-October 13, ISBN: 978-0-7695-2999-8

[J46] Dimosthenis Ioannidis, Dimitrios Tzovaras, Ioannis G. Damousis, Savvas Argyropoulos, and Konstantinos Moustakas, "Gait Recognition using Compact Feature Extraction Transforms and Depth Information", IEEE Transactions on Information Forensics and Security, Volume: 2,  Issue: 3, Part 2, pp. 623-630, Sept 2007. (29 citations)




  1. Amin, Tahir. Dynamic Descriptors in Human Gait Recognition. Diss. University of Toronto, 2013.

  2. Alawar, Hamad M., et al. "The relationship between 2D static features and 2D dynamic features used in gait recognition." SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2013.

  3. Kusakunniran, Worapan. Human Gait Recognition under Changes of Walking Conditions. Diss. The University of New South Wales, 2013.

  4. Mary, R. Femila Goldy1 R. Precila. "Genetic Algorithm for Self Occlusion Gait Recognition."

  5. Kusakunniran, W., et al. "A New View-Invariant Feature for Cross-View Gait Recognition." 1-1.

  6. Igual, Laura, Àgata Lapedriza, and Ricard Borràs. "Robust gait-based gender classification using depth cameras." EURASIP Journal on Image and Video Processing 2013.1 (2013): 1.

  7. Huang, Xiaxi, and Nikolaos V. Boulgouris. "Gait Recognition With Shifted Energy Image and Structural Feature Extraction." Image Processing, IEEE Transactions on 21.4 (2012): 2256-2268.

  8. Kusakunniran, Worapan, et al. "Gait recognition under various viewing angles based on correlated motion regression." Circuits and Systems for Video Technology, IEEE Transactions on 22.6 (2012): 966-980.

  9. Kusakunniran, Worapan, et al. "Cross-view and multi-view gait recognitions based on view transformation model using multi-layer perceptron." Pattern Recognition Letters 33.7 (2012): 882-889.

  10. Das Choudhury, Sruti, and Tardi Tjahjadi. "Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors." Pattern Recognition (2012).

  11. Kusakunniran, Worapan, et al. "Gait Recognition Across Various Walking Speeds Using Higher Order Shape Configuration Based on a Differential Composition Model." (2012): 1-15.

  12. Shukla, Richa, et al. "Gender Identification in Human Gait Using Neural Network." International Journal of Modern Education and Computer Science (IJMECS) 4.11 (2012): 70.

  13. McGuire, Michael L. "An Overview of Gait Analysis and Step Detection in Mobile Computing Devices." Intelligent Networking and Collaborative Systems (INCoS), 2012 4th International Conference on. IEEE, 2012.

  14. Manabe, Yusuke, Ryuki Saito, and Kenji Sugawara. "Biometric gait verification by horizontal swings in frontal manner towards human-aware environment."Cognitive Informatics & Cognitive Computing (ICCI* CC), 2012 IEEE 11th International Conference on. IEEE, 2012.

  15. Sivapalan, S., Chen, D., Denman, S., Sridharan, S., & Fookes, C. (2011, October). Gait energy volumes and frontal gait recognition using depth images. In Biometrics (IJCB), 2011 International Joint Conference on (pp. 1-6). IEEE.

  16. Cross-view and multi-view gait recognitions based on view transformation model using multi-layer perceptron, Worapan Kusakunniran, Qiang Wu, Jian Zhang, Hongdong Li, Pattern Recognition Letters, In Press, Corrected Proof - Note to users , 27 April 2011

  17. Lu, J., & Tan, Y. P. (2010). Gait-based human age estimation. Information Forensics and Security, IEEE Transactions on, 5(4), 761-770.

  18. Setti, F. (2010). Metodi e applicazioni di sensor fusion per i sistemi meccatronici.

  19. Automatic Gait Recognition Using Kernel Principal Component Analysis, Xiang-tao Chen, Zhi-hui Fan, Hui Wang, Zhe-qing Li, Biomedical Engineering and Computer Science (ICBECS), 2010 International Conference on , Issue Date: 23-25 April 2010, On page(s): 1 - 4 , Location: Wuhan

  20. Singh, S., & Biswas, K. K. (2009, December). Spatio-temporal Energy based Gait Recognition. In Data Mining, 2009. ICDM'09. Ninth IEEE International Conference on (pp. 998-1003). IEEE.

  21. Huang, X., Boulgouris, N. V., & Georgakis, A. (2009, July). Gait recognition based on time-frequency analysis. In Digital Signal Processing, 2009 16th International Conference on (pp. 1-4). IEEE.

  22. Action Recognition in Video by Covariance Matching of Silhouette Tunnels, Kai Guo, Prakash Ishwar, and Janusz Konrad, Proc. of 22-nd Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI-2009, Oct. 11–14, 2009, Rio de Janeiro, Brazil

  23. Gait Representation and Recognition Using Haar Wavelet and Radon Transform, hijing Liu, 2009 WASE International conference on Information Engineering, Taiyuan, Shanxi, china, 10-11 July 2009

  24. Computational Intelligence in Gait Research: A Perspective on Current Applications and Future Challenges, Daniel T. H. Lai, Rezaul K. Begg, and Marimuthu Palaniswami, IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 13, NO. 5, SEPTEMBER 2009

  25. Biometric Gait Recognition with Carying and clothing Variants, Shamsher Singh and K.K. Biswas, S.Chaudhury et al. (Eds. ): PReMI2009, LNCS 5909, pp.446-451, 2009, Springer-Verlag Berlin Heidelberg 2009

  26. J.-F. Hu, X.-C. Bao, “Person identification based on electroencephalogram signals”, Journal of Clinical Rehabilitative Tissue Engineering Research 13 (17), pp. 3260-3264, 2009.

  27. Z.-J. Xue, B.-K. Wan, X.-H. Liu, D. Ming, S.-J. Jin, “A new technique of gait feature extraction based on multi-parameter model”, Chinese Journal of Biomedical Engineering 28 (1), pp. 22-26, 2009.

  28. J. Hu, P. Xuecai, “EEG identity authentication method”, Chinese tissue engineering research and clinical rehabilitation, no. 17, 2009, pp. 3260-3264.

  29. C. Xue, Y Baeg, H. Liu Hui, S. Jin, “Multi-parameters gait model extraction”, The Chinese Journal of biomedical engineering, 2009 Cap.28 volume 1, pp. 22-26.

[J38] P. Daras, D. Zarpalas, D.Tzovaras and M.G.Strintzis: "Efficient 3D Model Search and Retrieval Using Generalized 3D Radon Transforms", IEEE Trans. on Multimedia,Volume 8, Issue 1,  Feb. 2006 Page(s):101-114. (27 citations)




  1. Dang, T. K. "Semi-interactive construction of 3D event logs for scene investigation." (2013).

  2. Martínez-Martínez, Cristina, and Iñaki Etxaniz-Errazkin. "Mejorando las búsquedas en EUROPEANA, el proyecto ASSETS." El profesional de la información 22.3 (2013): 224-232.

  3. Kien, Dang Trung. "Semi-Interactive Construction of 3D Event Logs for Scene Investigation." (2013).

  4. Zou, Kuan-Sheng, et al. "Shape-based retrieval and analysis of 3D models using fuzzy weighted symmetrical depth images." Neurocomputing (2012).

  5. Dahyot, Rozenn, and Jonathan Ruttle. "Generalised relaxed radon transform (GR2T) for robust inference." Pattern Recognition (2012).

  6. Zou, Kuan-Sheng, et al. "A novel 3D model retrieval approach using combined shape distribution." Multimedia Tools and Applications (2012): 1-20.

  7. Leng, Biao, and Zhang Xiong. "ModelSeek: an effective 3D model retrieval system." Multimedia Tools and Applications 51.3 (2011): 935-962.

  8. Philipp-Foliguet, Sylvie, et al. "Artwork 3D model database indexing and classification." Pattern Recognition 44.3 (2011): 588-597.

  9. Sfikas, Konstantinos, Theoharis Theoharis, and Ioannis Pratikakis. "ROSy+: 3D object pose normalization based on pca and reflective object symmetry with application in 3D object retrieval." International Journal of Computer Vision 91.3 (2011): 262-279.

  10. Wen, Laixiang, Jinyuan Jia, and Yan Gao. "Lightweight Web3D modeling by finding and reusing repeated components." Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry. ACM, 2011.

  11. Zhang, Q., Jia, J., & Li, H. (2010, December). A gpu based 3d object retrieval approach using spatial shape information. In Multimedia (ISM), 2010 IEEE International Symposium on (pp. 212-219). IEEE.

  12. Philipp-Foliguet, S., Jordan, M., Fuzier, M., & Gosselin, P. H. (2010, October). Indexing of 3d models based on graph of surfacic regions. In Proceedings of the ACM workshop on 3D object retrieval (pp. 69-74). ACM.

  13. Petrou, M., & Wang, F. A Tutorial on the Practical Implementation of the Trace Transform.

  14. ROSy+: 3D Object Pose Normalization Based on PCA and Reflective Object Symmetry with Application in 3D Object Retrieval, Konstantinos Sfikas · Theoharis Theoharis, Ioannis Pratikakis, Received: 20 March 2010 / Accepted: 27 September 2010, © Springer Science+Business Media, LLC 2010, Int J Comput Vis DOI 10.1007/s11263-010-0395-x

  15. 3D Model Retrieval Using 2D View and Transform-Based Features, Pengjie Li, Huadong Ma and Anlong Ming, Advances in Multimedia Information Processing - PCM 2010 , Lecture Notes in Computer Science, 2010, Volume 6297/2010, 449-460, DOI: 10.1007/978-3-642-15702-8_41

  16. Indexing of 3D Models Based on Graph of Surfacic Regions, Sylvie Philipp-Foliguet , Michel M. Jordan , Matthias Fuzier, Philippe-Henri Gosselin, International Workshop on 3D Object Retrieval, ACM Multimedia 2010, Italie (2010)

  17. Artwork 3D Model Database Indexing and Classification, S Philipp-Foliguet, M Jordana, L Najmanb, J Coustyb - Pattern Recognition, 2010 - esiee.fr

  18. A 3D shape retrieval framework for 3D smart cities, Biao Leng, Zhang Xiong and Xiangwei Fu, Frontiers of Computer Science in China, Volume 4, Number 3, 394-404, DOI: 10.1007/s11704-010-0366-y, 2010

  19. A Ray-based Method for 3D Model’s Comparison by, Genetic Algorithm*, Li Rao, Jianhui Zhao*, Xiaoyu Li, Chengjiang Long, Yihua Ding, Yuanyuan Zhang, Lu Xiong and Zhiyong Yuan, Advances in Systems Science and Applications (2009), Vol.9, No.3

  20. 2009 Seventh International Workshop on Content-Based Multimedia Indexing, C Käs, H Nicolas, KWC Domain - computer.org

  21. ModelSeek: an effective 3D model retrieval system, Biao Leng · Zhang Xiong, Multimedia Tools and Applications, Nov.2009, doi: 10.1007/s11042-009-0424-3.

  22. PANORAMA: A 3D Shape Descriptor Based on Panoramic Views for Unsupervised 3D Object Retrieval, Panagiotis Papadakis · Ioannis Pratikakis ·Theoharis Theoharis · Stavros Perantonis, Int J Comput Vis DOI 10.1007/s11263-009-0281-6, 22 July 2009, © Springer Science+Business Media, LLC 2009

  23. Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation, Panagiotis Papadakis, Ioannis Pratikakis, Stavros Perantonis and Theoharis Theoharis, Pattern Recognition, Volume 40, Issue 9, September 2007, Pages 2437-2452

  24. Support Vector Machine active learning for 3D model retrieval, LENG Biao, QIN Zheng, LI Li-qun, Journal of Zhejiang University - Science A, Volume 8, Number 12 / November, 2007, pp.1953-1961

  25. DEALING WITH DEGENERATE INPUT IN 3D MODELING OF INDOOR SCENES USING HANDHELD CAMERAS, T.K. Dang and M. Worring, Multimedia and Expo, 2007 IEEE International Conference on, Publication Date: 2-5 July 2007, On page(s): 108-111

  26. Support Vector Machine active learning for 3D model retrieval, LENG Biao, QIN Zheng, LI Li-qun, Journal of Zhejiang University SCIENCE A, ISSN 1673-565X(Print), 1862-1775(Online), Monthly, 2007   Vol. 8   No. 12   p. 1953~1961

  27. A Hybrid Ontology and Content-Based Search Engine For Multimedia Retrieval, Charalampos Doulaverakis, Evangelia Nidelkou, Anastasios Gounaris, and Yiannis Kompatsiaris, Proc. of the 10th East 2006

[J54] Ioannis G. Damousis, Dimitrios Tzovaras and Angelos Bekiaris, “Unobtrusive multimodal biometric authentication – The HUMABIO Project concept”, EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 265767, 11 pages, 2008. doi:10.1155/2008/265767. (26 citations)




  1. Klonovs, Juris, et al. "ID Proof on the Go: Development of a Mobile EEG-Based Biometric Authentication System." IEEE Vehicular Technology Magazine 8.1 (2013).

  2. Nguyen, Phuoc, et al. "Motor Imagery EEG-Based Person Verification."Advances in Computational Intelligence. Springer Berlin Heidelberg, 2013. 430-438.

  3. Segundo, Maurıcio Pamplona, et al. "Continuous 3D Face Authentication using RGB-D Cameras."

  4. Korać, Dragan, and F. O. N. Dejan Simić. "Pregled Metoda Autentifikacije Na Mobilnim Ure Ajima - A Survey of Authentication Methods on Mobile Devices."

  5. Avancha, Sasikanth, Amit Baxi, and David Kotz. "Privacy in mobile technology for personal healthcare." ACM Computing Surveys (CSUR) 45.1 (2012): 3.

  6. Odinaka, I., Lai, P., Kaplan, A., O’Sullivan, J., Sirevaag, E., & Rohrbaugh, J. (2012). ECG biometric recognition: A comparative analysis.

  7. Lodge, Juliet. "The Dark Side of the Moon: Accountability, Ethics and New Biometrics." Second Generation Biometrics: The Ethical, Legal and Social Context (2012): 305-328.

  8. Sui, Yan, et al. "Secure and privacy-preserving biometrics based active authentication." Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on. IEEE, 2012.

  9. Schouten, Ben AM, Albert Ali Salah, and Rob Kranenburg. "Behavioural Biometrics and Human Identity." Second Generation Biometrics: The Ethical, Legal and Social Context (2012): 195-214.

  10. Medical biometrics in mobile health monitoring, Foteini Agrafioti, Francis M.Bui, Dimitrios Hatzinakos, May 2011, 525-539, Security and Communication Networks

  11. Gaweda, A., & Patterson, E. (2011, March). Individual identification based on facial dynamics during expressions using active-appearance-based hidden markov models. In Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on (pp. 797-802). IEEE.

  12. Kurkovsky, S., & Syta, E. (2010, December). Approaches and issues in location-aware continuous authentication. In Computational Science and Engineering (CSE), 2010 IEEE 13th International Conference on (pp. 279-283). IEEE.

  13. One-Lead ECG-based Personal Identification Using Ziv-Merhav Cross Parsing, 2010 20th International Conference on Pattern Recognition,Istanbul, Turkey August 23-August 26, ISBN: 978-0-7695-4109-9, David Pereira Coutinho, Ana L.N. Fred Mário A.T. Figueiredo

  14. Medical biometrics in mobile health monitoring, Foteini Agrafioti, Francis M. Bui, Dimitrios Hatzinakos, Security and Communication Networks, ( Early View-Articles online in advance of print ), Published online, 26 Jul 2010, DOI:10.1002/sec.227, Copyright 2010 John Wiley & Sons Ltd

  15. Hashim, A. Y. B., Zain, N. A. I. M., Zamri, R., & Besari, A. R. A. (2010, June). Development of lumped-input access system. In Intelligent and Advanced Systems (ICIAS), 2010 International Conference on (pp. 1-5). IEEE.

  16. Gaweda, A. M. (2010). Individual Identification Using Dynamic Facial Expressions with Active Appearance-based Hidden Markov Models (Doctoral dissertation, University of North Carolina).

  17. Activity-aware ECG-based patient authentication, for remote health monitoring, J.Sriram, M.Shin, T.Choudhury, D.Kotz, ICMI-MLMI’09, November 2–4, 2009, Cambridge, MA, USA. Copyright 2009 ACM 978-1-60558-772-1/09/11

  18. Agrafioti, F., Bui, F. M., & Hatzinakos, D. (2009, September). Medical biometrics: The perils of ignoring time dependency. In Biometrics: Theory, Applications, and Systems, 2009. BTAS'09. IEEE 3rd International Conference on (pp. 1-6). IEEE.

  19. Sriram, J. (2009). Activity-Aware Electrocardiogram-based Passive Ongoing Biometric Verification (Doctoral dissertation, Dartmouth College Hanover, New Hampshire).

  20. Avancha, S. A. S. I. K. A. N. T. H., Baxi, A. M. I. T., & Kotz, D. A. V. I. D. (2009). Privacy in mobile technology for personal healthcare. Submitted to ACM Computing Surveys.

  21. Chen, G., Yan, B., Shin, M., Kotz, D., & Berke, E. (2009, July). MPCS: Mobile-phone based patient compliance system for chronic illness care. In Mobile and Ubiquitous Systems: Networking & Services, MobiQuitous, 2009. MobiQuitous' 09. 6th Annual International (pp. 1-7). IEEE.

  22. Challenges in Data Quality Assurance in Pervasive Health Monitoring Systems, Janani Sriram, Minho Shin, David Kotz, Anand Rajan, Manoj Sastry, Mark Yarvis, Future of Trust in Computing, Vieweg+Teubner, doi: 10.1007/978-3-8348-9324-6, Session 5, pp.129-142, Sunday, July 26, 2009.

  23. On supporting anonymity in a BAN biometric framework, Agrafioti, F.; Bui, F.M.; Hatzinakos, D., Digital Signal Processing, 2009 16th International Conference on, Volume , Issue , 5-7 July 2009 Page(s):1 – 6, Digital Object Identifier   10.1109/ICDSP.2009.5201080

  24. ePet: when cellular phone learns to recognize its owner, Mohammad Tamviruzzaman, Sheikh Iqbal Ahamed, Chowdhury Sharif Hasan, Casey O'brien, Conference on Computer and Communications Security, Proceedings of the 2nd ACM workshop on Assurable and usable security configuration, Pages 13-18, Year of Publication: 2009.

  25. Context-aware Data Association and Authenticity in Pervasive Healthcare, M. A. Chowdhury, J Light, 2009 World Congress on Privacy, Security, Trust and the Management of E-Business DOI 10.1109/CONGRESS.2009.20, IEEE, 2009

  26. Challenges in Data Quality Assurance in Pervasive Health Monitoring Systems, J.Sriram, M.Shin, D.Kotz, A.Rajan, M.Sastry, M.Yarvis, Future of Trust in Computing, Vieweg+Teubner (2009), 129-142, (Editors, D.Gawrock, H.Reimer, A-R.Sadeghi, C.Vishik).

[J59] A.Mademlis, P.Daras, D.Tzovaras and M.G.Strintzis, "3D Object Retrieval using the 3D Shape Impact Descriptor" ELSEVIER, Pattern Recognition, Volume 42 , Issue 11, pp. 2447-2459, Nov 2009 (38 citations)




  1. Cheng, H., & Chung, S. M. (2015). Orthogonal moment-based descriptors for pose shape query on 3D point cloud patches. Pattern Recognition.

  2. Leng, B., Zeng, J., Yao, M., & Xiong, Z. (2015). 3D Object Retrieval With Multitopic Model Combining Relevance Feedback and LDA Model. Image Processing, IEEE Transactions on, 24(1), 94-105.

  3. Shah, S. A. A., Bennamoun, M., & Boussaid, F. (2015). A novel 3D vorticity based approach for automatic registration of low resolution range images. Pattern Recognition, 48(9), 2859-2871.

  4. Biasotti, S., Cerri, A., Bronstein, A., & Bronstein, M. (2015, October). Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment. In Computer Graphics Forum.

  5. Leng, B., Guo, S., Zhang, X., & Xiong, Z. (2015). 3D object retrieval with stacked local convolutional autoencoder. Signal Processing, 112, 119-128.

  6. Leng, B., Du, C., Guo, S., Zhang, X., & Xiong, Z. (2015). A powerful 3D model classification mechanism based on fusing multi-graph. Neurocomputing.

  7. Leng, B., Guo, S., Du, C., Zeng, J., & Xiong, Z. (2015). 3D Object retrieval based on viewpoint segmentation. Multimedia Systems, 1-10.

  8. Leng, B., Liu, Y., Yu, K., Zhang, X., & Xiong, Z. (2015). 3D object understanding with 3D Convolutional Neural Networks. Information Sciences.

  9. Jiang, L. (2015). 3D Shape Retrieval Method based on Normal-Angle Histogram. Appl. Math, 9(2), 1081-1087.

  10. Zeng, J., Leng, B., & Xiong, Z. (2014). 3-D object retrieval using topic model. Multimedia Tools and Applications, 1-23.

  11. Zou, K. S., Ip, W. H., Wu, C. H., Chen, Z. Q., Yung, K. L., & Chan, C. Y. (2014). A novel 3D model retrieval approach using combined shape distribution. Multimedia tools and applications, 69(3), 799-818.

  12. Sun, Y., Chen, L., Huang, Y., & Wan, S. (2014). An Enhanced Graph Representation and Heuristic Tabu Search Approach for Flexible and Efficient 3D Shape Matching. Journal of Computing and Information Science in Engineering, 14(3), 031009.

  13. Biasotti, S., Cerri, A., Bronstein, A., & Bronstein, M. (2014). Quantifying 3D shape similarity using maps: Recent trends, applications and perspectives.

  14. Zhao, Y. (2014). Maximum Energy Subsampling: A General Scheme For Multi-resolution Image Representation And Analysis.

  15. Axenopoulos, Apostolos, et al. "SP-Dock: Protein-Protein Docking Using Shape and Physicochemical Complementarity." IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 10.1 (2013): 135-150.

  16. Rafailidis, D., S. Manolopoulou, and P. Daras. "A unified framework for multimodal retrieval." Pattern Recognition (2013).

  17. Pasqualotto, Giuliano, Pietro Zanuttigh, and Guido M. Cortelazzo. "Combining color and shape descriptors for 3D model retrieval." Signal Processing: Image Communication (2013).

  18. Gao, Yue, et al. "Camera constraint-free view-based 3-D object retrieval." Image Processing, IEEE Transactions on 21.4 (2012): 2269-2281.

  19. Lian, Zhouhui, et al. "A comparison of methods for non-rigid 3D shape retrieval."Pattern Recognition (2012).

  20. Sfikas, Konstantinos, Theoharis Theoharis, and Ioannis Pratikakis. "Non-rigid 3D object retrieval using topological information guided by conformal factors."The Visual Computer (2012): 1-13.

  21. Zhao, Yanjun, and Saeid Belkasim. "Multiresolution Fourier Descriptors for Multiresolution Shape Analysis." Signal Processing Letters, IEEE 19.10 (2012): 692-695.

  22. Zou, Kuan-Sheng, et al. "A novel 3D model retrieval approach using combined shape distribution." Multimedia Tools and Applications (2012): 1-20.

  23. Liu, Qiong. "A Survey of Recent View-based 3D Model Retrieval Methods."arXiv preprint arXiv:1208.3670 (2012).

  24. Gao, Xiaohong, et al. "Retrieval of 3D Medical Images via Their Texture Features." International Journal On Advances in Software 4.3 and 4 (2012): 499-509.

  25. WANG, Dawei, et al. "A Retrieval Algorithm of Sheet Metal Parts Based on Relationships of Features." Chinese Journal of Aeronautics 25.3 (2012): 453-472.

  26. Xiaofeng, Chen, et al. "3D Model Retrieval Based on Projected Area at Mesh Vertex." Digital Manufacturing and Automation (ICDMA), 2012 Third International Conference on. IEEE, 2012.

  27. Li-jun, Jiang, Chen Xiao-feng, and Zhang Guang-yu. "3D model retrieval method based on area distributions." Natural Computation (ICNC), 2012 Eighth International Conference on. IEEE, 2012.

  28. Matching 2D and 3D articulated shapes using the eccentricity transform, Adrian Ion, Nicole M. Artner, Gabriel Peyré, Walter G. Kropatsch, Laurent D. Cohen, Computer Vision and Image Understanding, Volume 115, Issue 6, June 2011, Pages 817-834

  29. Search in Non-Homogenous Random Environments, Omer H. Abdelrahman, Erol Gelenbe, http://www.sigmetrics.org/sigmetrics2011

  30. Content-based Retrieval of 3D Medical Images, Yu Qian, Xiaohong Gao, Martin Loomes, Richard Comley, Balbir Barn Rui Hui, Zenmin Tian, IARIA, 2011, ISBN: 978-1-61208-119-9, Location: Gosier, Guadeloupe, France

  31. 3D Objects Retrieval using Curvature Scale Space and Zernike Moments, Saïd Mahmoudi, Mohammed Benjelloun, Tarik Filali Ansary, Journal of Pattern Recognition Research, Vol 6, No 1 (2011)

  32. Sfikas, K., Pratikakis, I., & Theoharis, T. (2011). Contopo: Non-rigid 3d object retrieval using topological information guided by conformal factors. In Eurographics Workshop on 3D Object Retrieval (pp. 25-32).

  33. Tao, S., Huang, Z., Zuo, B., Peng, Y., & Kang, W. (2011). Partial retrieval of CAD models based on the gradient flows in Lie group. Pattern Recognition.

  34. Hybrid Associative Retrieval of Three-Dimensional Models, Shaohong Zhang; Hau-San Wong; Zhiwen Yu, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, Issue Date: Dec. 2010, Volume: 40 Issue:6, On page(s): 1582 – 1595, ISSN: 1083-4419

  35. Shape alignment and shape orientation analysis-based 3D shape retrieval system, Zhenbao Liu, Zhongsheng Wang, Cunbao Ma, Chao Zhang, Jun Mitani and Yukio Fukui, Multimedia Systems , Volume 16, May 2010, Numbers 4-5, 319-333, DOI: 10.1007/s00530-010-0193-x

  36. Gelenbe, E. (2010). Search in unknown random environments. Physical Review E, 82(6), 061112.

  37. Gao, X., Qian, Y., Hui, R., Loomes, M., Comley, R., Barn, B., ... & Rix, J. (2010). Texture-based 3D image retrieval for medical applications. Proceedings of IADIS e-Health. Freiburg, Germany.

  38. Zhang, S. (2010). Hybrid machine learning using ensemble-based approaches.

[C51] G.A.Triantafyllidis, D.Tzovaras and M.G.Strintzis: "Detection of Blocking Artifacts of Compressed Still Images", 11th International Conference on Image Analysis and Processing, Palermo, Italy, September 2001. (28 citations)




  1. Erol, B., Hull, J. J., Kishi, H., Ke, Q., & Moraleda, J. (2015). U.S. Patent No. 8,989,431. Washington, DC: U.S. Patent and Trademark Office.

  2. Erol, B., Moraleda, J., & Hull, J. J. (2015). U.S. Patent No. 9,020,966. Washington, DC: U.S. Patent and Trademark Office.

  3. Hull, J. J., Erol, B., Graham, J., & Van Olst, D. G. (2015). U.S. Patent No. 8,949,287. Washington, DC: U.S. Patent and Trademark Office.

  4. Erol, B., Hull, J. J., & Moraleda, J. (2014). U.S. Patent No. 8,856,108. Washington, DC: U.S. Patent and Trademark Office.

  5. Moraleda, J., Erol, B., & Hull, J. J. (2014). U.S. Patent No. 8,676,810. Washington, DC: U.S. Patent and Trademark Office.

  6. Kishi, H., Takahashi, S., Furukawa, T., Erol, B., Hull, J. J., Moraleda, J., & Graham, J. (2014). U.S. Patent No. 8,825,682. Washington, DC: U.S. Patent and Trademark Office.

  7. Hull, J. J., Erol, B., Graham, J., & Van Olst, D. G. (2014). U.S. Patent No. 8,838,591. Washington, DC: U.S. Patent and Trademark Office.

  8. Erol, B., Antunez, E. R., Huet, L., Hull, J. J., & Moraleda, J. (2014). U.S. Patent No. 8,868,555. Washington, DC: U.S. Patent and Trademark Office.



  9. Erol, Berna, Jonathan J. Hull, Hidenobu Kishi, Qifa Ke, and Jorge Moraleda. "Document-based networking with mixed media reality." U.S. Patent 8,156,115, issued April 10, 2012.

  10. Ke, Qifa, and Jonathan J. Hull. "Recognition and tracking using invisible junctions." U.S. Patent 8,184,155, issued May 22, 2012.

  11. Hull, Jonathan J., Berna Erol, Jamey Graham, Jorge Moraleda, Ichiro Sakikawa, and Daniel G. Van Olst. "Capturing symbolic information from documents upon printing." U.S. Patent 8,201,076, issued June 12, 2012.

  12. Graham, Jamey, and Jonathan J. Hull. "Dynamic presentation of targeted information in a mixed media reality recognition system." U.S. Patent 8,156,116, issued April 10, 2012.

  13. Graham, Jamey, Berna Erol, Peter E. Hart, and Jonathan J. Hull. "User interface for mixed media reality." U.S. Patent 8,156,427, issued April 10, 2012.

  14. Moraleda, Jorge. "Retrieving electronic documents by converting them to synthetic text." U.S. Patent 8,176,054, issued May 8, 2012.

  15. Hull, Jonathan J., Berna Erol, Jamey Graham, Peter E. Hart, Geoffrey H. Nudd, and Stephen Weyl. "Integration and use of mixed media documents." U.S. Patent 8,195,659, issued June 5, 2012.

  16. Singh, S. (2012). An algorithm for improving the quality of compacted JPEG image by minimizes the blocking artifacts. arXiv preprint arXiv:1208.1983.

  17. Ke, Qifa, and Jonathan J. Hull. "Information retrieval using invisible junctions and geometric constraints." U.S. Patent 8,144,921, issued March 27, 2012.

  18. Triggering actions with captured input in a mixed media environment, JJ Hull, B Erol, J Graham, PE Hart… - US Patent …, 2011 - Google Patents

  19. System and methods for creation and use of a mixed media environment with geographic location information, JJ Hull, J Graham, K Piersol… - US Patent 8,005,831, 2011 - Google Patents

  20. Triggering applications for distributed action execution and use of mixed media recognition as a control input, JJ Hull, B Erol, J Graham, PE Hart… - US Patent …, 2011 - Google Patents

  21. Shared document annotation, JJ Hull, B Erol, J Graham… - US Patent 7,885,955, 2011 - Google Patents

  22. Visibly-perceptible hot spots in documents, JJ Hull, B Erol, J Graham… - US Patent 7,917,554, 2011 - Google Patents

  23. Synthetic image and video generation from ground truth data, A Lookingbill, E Antunez, B Erol, JJ Hull… - US Patent 7,970,171, 2011 - Google Patents

  24. Mixed media reality brokerage network with layout-independent recognition, Stephen A. Weyl, US, Patent number: 7769772, Issue date: 3 Aug 2010, Application number: 12/499,574

  25. System And Methods For Creation And Use Of A Mixed Media Environment, Jonathan J. Hull, Application number: 12/719,437, Publication number: US 2010/0166309 A1, Filing date: 8 Mar 2010

  26. Triggering applications based on a captured text in a mixed media environment, Jonathan J. Hull, Patent number: 7672543, US, Issue date: 2 Mar 2010, Application number: 11/461,032

  27. Mixed Media Reality Brokerage network and methods of Use, Stephen Weyl., Geoffrey Nudd, Peter Hart, Jonathan Hull, Patent No:US7.587,412B2, Date of Patent Sep.8, 2009.

  28. System and Method for Using individualized Mixed Document, Geoffrey Nudd, Stephen Weyl, Jamey Graham, Berna Erol, Reter Hart, Jonathan Hull, Patent No:US7.551.780B2, Date of Patent Jun.23, 2009.

[J36] I.Kolonias, D.Tzovaras, S.Malasiotis and M.G.Strintzis: "Fast Content-Based Search of VRML Models Based on Shape Descriptors", IEEE Trans. on Multimedia, Vol. 7, No 3, pp. 114-126, February 2005. (22 citations)




  1. Boomilingam, T., & Subramaniam, M. (2014). Review on CBIR Trends and Techniques to Upgrade Image Retrieval. International Review on Computers and Software (IRECOS), 9(7), 1227-1240.

  2. Yu, Y., Li, J., Yu, J., Guan, H., & Wang, C. (2014). Pairwise three-dimensional shape context for partial object matching and retrieval on mobile laser scanning data. Geoscience and Remote Sensing Letters, IEEE, 11(5), 1019-1023.

  3. Thenkalvi, B., & Murugavalli, S. (2014). Review on CBIR Trends and Techniques to Upgrade Image Retrieval. Computers and Software, 1227.

  4. AN EFFICIENT 3D MODEL RETRIEVAL BASED ON PRINCIPAL AXES ANALYSIS AND FEATURE INTEGRATION, SHENG-FUU LIN, CHIN-CHIA WU, CHI-YAO HSU, DOU-CHIH HSU, Volume: 25, Issue: 4(2011) pp. 583-604     DOI: 10.1142/S0218001411008749

  5. 3D Object Search Through Semantic Component, Chunjing Xu, Zhengwu Zhang, Jianzhuang Liu, and Xiaoou Tang, MM '10 Proceedings of the international conference on Multimedia, ©2010 table of contents ISBN: 978-1-60558-933-6, doi>10.1145/1873951.1874123

  6. Study on modeling and simulation method of mechanical parts, Li Wei; Zhang Xinyun, Mechanic Automation and Control Engineering (MACE), 2010 International Conference on, Issue Date: 26-28 June 2010, On page(s): 449 – 452, Location: Wuhan, Print ISBN: 978-1-4244-7737-1

  7. ModelSeek: an effective 3D model retrieval system, Biao Leng · Zhang Xiong, Multimedia Tools Appl., DOI 10.1007/s11042-009-0424-3, November 2009

  8. A survey of content based 3D shape retrieval methods, JohanW. H. Tangelder · Remco C. Veltkamp, Multimed Tools Appl (January 2008) 39:441–471, DOI 10.1007/s11042-007-0181-0

  9. 3-D mesh representation and retrieval using Isomap manifold, Jung-Shiong Chang; Shih, A.C.-C.; Lin, H.-Y.; Kao, H.-F.; Liao, M.H.-Y.; Fang, W.-H., Multimedia Signal Processing, 2008 IEEE 10th Workshop on Volume , Issue , 8-10 Oct. 2008 Page(s):541 – 546

  10. Content-Based 3-D Model Retrieval: A Survey, Yang Yubin   Lin Hui   Zhang Yao  , Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, Publication Date: Nov. 2007, Volume: 37,  Issue: 6, On page(s): 1081-1098

  11. Guo, J.-F., Gu, X.-J., Qi, G.-N., Wang, S.-F., Ma, J. “Graphics applications services based on VRML model in Web parts-library”, in Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, Volume 13, Issue 3, March 2007, Pages 472-477+496

  12. Support Vector Machine active learning for 3D model retrieval, LENG Biao, QIN Zheng, LI Li-qun, Journal of Zhejiang University SCIENCE A, ISSN 1673-565X(Print), 1862-1775(Online), Monthly, 2007   Vol. 8   No. 12   p. 1953~1961

  13. Research of Creating and Fetching 3D Models of Virtual Reality Based on OpenGL, Tangyun Dai   Zemin Wang   Shouheng Xu, Mechatronics and Automation, Proceedings of the 2006 IEEE International Conference on, Publication Date: 25-28 June 2006 On page(s): 1991-1995

  14. Salient geometric features for partial shape matching and similarity - group of 2 »
    R Gal, D Cohen-Or - ACM Transactions on Graphics (TOG), 2006 –

  15. Multi-level spherical moments based 3D model retrieval, W Liu, Y He - Journal of Zhejiang University-Science A, 2006 - Springer

  16. Support Vector Machine active learning for 3D model retrieval, LENG Biao, QIN Zheng, LI Li-qun, Journal of Zhejiang University SCIENCE A ISSN 1673-565X, ISSN 1862-1775, MIR’04, October 15–16, 2004, New York, New York, USA

  17. Chi-Square Goodness-of-Fit Test of 3D Point Correspondence for Model Similarity Measure and Analysis, Jun Feng and Horace H.S. Ip, W.-K. Leow et al. (Eds.): CIVR 2005, LNCS 3568, pp. 445–453, 2005. © Springer-Verlag Berlin Heidelberg 2005

  18. The Princeton Shape Benchmark, Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser, Shape Modeling Applications, 2004. Proceedings, Publication Date: 7-9 June 2004, On page(s): 167- 178

  19. Efficient 3D Object Retrieval Using Depth Images, N.Vajramushti, I.A.Kakadiaris, T.Theoharis, G.Papaioannou, International Multimedia Conference, Proceedings of the 6th ACM SIGMM, pp.189-196, 2004

  20. 3D Model Search Engine Based on Lightfield Descriptors, Yu-Te Shen, Ding-Yun Chen, Xiao-Pei Tian and Ming Ouhyoung, EUROGRAPHICS 2003 / J. Flores and P. Cano

  21. On Visual Similarity Based 3D Model Retrieval, Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen and Ming Ouhyoung, EUROGRAPHICS 2003 / P. Brunet and D. Fellner ,(Guest Editors), Volume 22 (2003), Number 3

  22. A 3D Object Retrieval System Based on Multi-Resolution Reeb Graph, Ding-Yun Chen and Ming Ouhyoung, Proc. of Computer Graphics Workshop, 2002

[J22] I. Kompatsiaris, D. Tzovaras, V. Koutkias and M. G. Strintzis, "Deformable Boundary Detection of Stents in Angiographic Images", IEEE Trans. on Medical Imaging, vol. 19, no. 6, pp. 652-662, June 2000. (30 citations)




  1. Wu, J., Liu, G., Huang, W., Ghista, D. N., & Wong, K. K. (2015). Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study. Computer methods in biomechanics and biomedical engineering, 18(16), 1835-1845.

  2. Tolkowsky, D., Cohen, R., Steinberg, A., Philipp, S., & Klaiman, E. (2015). U.S. Patent No. 9,008,367. Washington, DC: U.S. Patent and Trademark Office.

  3. Steinberg, A., Tolkowsky, D., Cohen, R., & Philipp, S. (2015). U.S. Patent No. 9,008,754. Washington, DC: U.S. Patent and Trademark Office.

  4. Cohen, R., Klaiman, E., Steinberg, A., & Tolkowsky, D. (2015). U.S. Patent No. 9,026,197. Washington, DC: U.S. Patent and Trademark Office.

  5. Steinberg, A., Cohen, R., Philipp, S., Tolkowsky, D., & Klaiman, E. (2015). U.S. Patent No. 9,014,453. Washington, DC: U.S. Patent and Trademark Office.

  6. Iddan, G., Tolkowsky, D., Cohen, R., & Blank, J. (2014). U.S. Patent No. 8,700,130. Washington, DC: U.S. Patent and Trademark Office.

  7. Tolkowsky, D., Klaiman, E., Steinberg, A., & Cohen, R. (2014). U.S. Patent No. 8,855,744. Washington, DC: U.S. Patent and Trademark Office.

  8. Steinberg, A., Philipp, S., Tolkowsky, D., & Cohen, R. (2014). U.S. Patent No. 8,781,193. Washington, DC: U.S. Patent and Trademark Office.

  9. Tolkowsky, D., Cohen, R., Steinberg, A., Philipp, S., & Klaiman, E. (2014). U.S. Patent No. 8,670,603. Washington, DC: U.S. Patent and Trademark Office.

  10. Wang, Y., & Liatsis, P. (2014). An Automated System for 3D Segmentation of CT Angiograms. In Visual Computing (pp. 99-119). Springer Berlin Heidelberg.

  11. Manandhar, P., Chen, C. H., Coskun, A. U., & Qidwai, U. A. (2014). An Automated Robust Segmentation Method for Intravascular Ultrasound Images. Frontiers of Medical Imaging, 407-426.

  12. Viewing system for control of PTCA Angiograms, Peter Maria Johannes Rongen, Raoul Florent, Herman Stegehuis, United States Patent, NoUS8.000.507B2, Aug.16, 2011.

  13. Extraction of Quantitative Anatomical Information from Coronary Angiographies, Authors: J. Novoa, Francisco; Ezquerra, Norberto; Traba, Lola; Villar, Martin; Pereira, Javier; Manuel Vazquez-Rodriguez, Jose; Vazquez, Nicolas; Martinez-Romero, Marcos; Mato, Virgina, Current Bioinformatics, Volume 6, Number 2, June 2011 , pp. 233-250(18)

  14. Sadeghzadeh, R., Berks, M., Astley, S. M., & Taylor, C. J. (2011, March). Evaluation of blood vessel detection methods. In SPIE Medical Imaging (pp. 79623U-79623U). International Society for Optics and Photonics.

  15. Wong, K. K. L., Tu, J., Mazumdar, J., & Abbott, D. (2010). Modelling of blood flow resistance for an atherosclerotic artery with multiple stenoses and poststenotic dilatations. ANZIAM Journal, 51, C66-C82.

  16. Cheng, J. (2009). Automated detection and time lapse analysis of dendritic spines in laser scanning microscopy images.

  17. Schoonenberg, G. A., van den Houten, P. W., Florent, R., Lelong, P., Carroll, J. D., & ter Haar Romeny, B. M. (2009, February). Device enhancement using rotational X-ray angiography. In Proc. of SPIE Vol (Vol. 7259, pp. 725924-1).

  18. Schoonenberg, G., Florent, R., Lelong, P., Wink, O., Ruijters, D., Carroll, J., & ter Haar, R. B. (2009). Projection-based motion compensation and reconstruction of coronary segments and cardiac implantable devices using rotational X-ray angiography. Medical image analysis, 13(5), 785.

  19. Advanced Visibility Enhancement for Stents and Other Devices: Image Processing Aspects , Gert Schoonenberg MSc and Raoul Florent MSc, Cardiology Clinics Volume 27, Issue 3, August 2009, Pages 477-490 , Advances in Coronary Angiography

  20. A New External Force for Snakes Based on the IGGVF, Zheng, Ying   Li, Guangyao   Sun, Xie-hua  , Image and Signal Processing, 2008. CISP '08. Congress on, Publication Date: 27-30 May 2008, Volume: 3,  On page(s): 615-619

  21. R. Florent, L. Nosjean, P. Lelong, 'Medical viewing system and method for detecting and enhancing structures in noisy images,' Koninklijke Philips Electronics, UNITED STATES PATENT AND TRADEMARK OFFICE GRANTED PATENT, patno:US7289652, Oct 2007.

  22. An abdominal aortic aneurysm segmentation method: Level set with region and statistical information, Feng Zhuge, Geoffrey D. Rubin, Shaohua Sun, and Sandy Napel, Med. Phys. Volume 33, Issue 5, pp. 1440-1453 (May 2006) ,Published 28 April 2006

  23. Vessel Tree Reconstruction in Thoracic CT Scans With Application to Nodule Detection, Gady Agam*, Samuel G. Armato, III, and Changhua Wu, IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 4, APRIL 2005

  24. M. Ball, A. O’Brien, F. Dolan, G. Abbas, and J. A. McLaughlin, “Macrophage responses to vascular stent coatings”, Journal of Biomedical Materials Research Part A, Volume 70A, Issue 3, Pages 380 – 390, June 2004.

  25. C. Wu, G. Agam, A. S. Roy, and S. G. Armato III, “Regulated morphology approach to fuzzy shape analysis with application to blood vessel extraction in thoracic CT scans”, Medical Imaging 2004: Image Processing. Edited by Fitzpatrick, J. Michael; Sonka, Milan. Proceedings of the SPIE, Volume 5370, pp. 1262-1270, 2004.

  26. C Kirbas and F. K. H. Quek, “A Review of Vessel Extraction Techniques and Algorithms”, ACM Comput. Surv. 36(2): 81-121, 2004.

  27. T. Y. Lee and C. H. Lin, " Feature-Guided Shape-Based Image Interpolation ", IEEE Trans. on Medical Imaging, Vol. 21, No. 3, pp. 1479-1489, Dec. 2002.

  28. C. Kirbas and F. K.H. Quek, “A Review of Vessel Extraction Techniques and Algorithms”, Vision Interfaces and Systems Laboratory (VISLab), Wright State University, Dayton, Ohio, Technical report: VISLab-02-27, Nov. 2002.

  29. J Bredno, “Hoherdimensionale Modelle zur Segmentierung biologischer Strukturen”, Dissertation at the Fakultat fur Mathematik, Informatik und Naturwissenschaften, Aachen Technische Hochschule, May 2002.

[J5] S. N. Efstatiadis, D. Tzovaras and M. G. Strintzis, “Hierarchical Partition Priority Wavelet Image Compression”, IEEE transactions on image processing, Vol.5, No.7, pp. 1111-1123, Jul 1996. (18 citations)




  1. Zhu, L., Zhang, P., Li, D., Zhu, X., & Wang, C. (2015). A novel change detection method based on high-resolution SAR images for river course. Optik-International Journal for Light and Electron Optics, 126(23), 3659-3668.



  2. Kathirvalavakumar, T., and E. Ponmalar. "Self organizing map and wavelet based image compression." International Journal of Machine Learning and Cybernetics (2012): 1-8.

  3. Image Processing Apparatus and Method, Tamotsu Kajihara, United States Patent, Patent No.:US7,366,350B2, April 29, 2008.

  4. Xuli Shi, Zhaoyang Zhang, Liquan Shen, Yu Lu and Suxing Liu, “Multiresolution segmentation of video objects in the compression domain” Optical Engineering, Volume 46, Issue 9, September 2007

  5. Jiang, J.   Feng, G.   Yin, Y.  , “Progressive content access to databases of JPEG-compressed images”, Image Processing IET, Volume: 1,  Issue: 2, pp 207-214, June 2007

  6. Jose A. Garcia, Rosa Rodriguez-Sánchez, and Joaquín Fdez-Valdivia, “Optimal exploratory effort to build knowledge for video transmission”, Optical Engineering, Volume 46, Issue 4, April 2007

  7. Yuan He, Yupin Luo and Dongcheng Hu, “Automatic seeded region growing based on gradient vector flow for color image segmentation”, Optical Engineering, Volume 46, Issue 4, April 2007

  8. Juan José de Dios, “Skin color and feature-based segmentation for face localization”, Optical Engineering, Volume 46, Issue 3, March 2007

  9. Zhi Liu, Zhaoyang Zhang, Liquan Shen, “Moving object segmentation in the H.264 compressed domain”, Optical Engineering, Volume 46, Issue 1, January 2007

  10. Image compression based on biorthogonal wavelet transform, Hong Liu   Lin-pei Zhai   Ying Gao   Wen-ming Li   Jiu-fei Zhou ,  Communications and Information Technology, 2005. ISCIT 2005. IEEE International Symposium on, Publication Date: 12-14 Oct. 2005, Volume: 1,  On page(s): 598- 601

  11. Efficient wavelet image coder for portable embedded systems, Weide Chang, Jong-Wook Park, Proc. SPIE, Vol. 5298, 544 (2004); doi:10.1117/12.530793, Poster Session

  12. Image Processing Apparatus and Method and storing medium, Hiroshi Kajiwara, Makoto Sato, United States Patent, Patent No.:US6,337,929 B1, Jan 8 2002

  13. F. Marino, “Two Fast Architectures for the Direct 2-D Discrete Wavelet Transform”, IEEE T Signal Process, Vol. 49, No.6, pp. 1248-1259 Jun 2001.

  14. Near-lossless image compression based on integer wavelet transforms, Yiu S. Moon, Jinwen Tian, Proc. SPIE, Vol. 4551, 21 (April 2001); doi:10.1117/12.442891, Image Compression

  15. Wavelet-based perceptually lossless coding of R-G-B images, Francescomaria Marino1, Tinku Acharya2, Lina J. Karam, Integrated Computer-Aided Engineering, 1069-2509 (Print) 1875-8835 (Online), Issue Volume 7, Number 2/2000, Pages 117-134

  16. F. Marino, “Efficient High-Speed/Low-Power Pipelined Architecture for the Direct 2-D Discrete Wavelet Transform”, IEEE T Circuits-II, Vol. 47, No.12, pp.1476-1491, Dec 2000

  17. R.H.G Tan, J.F Zhang,R. Morgan, et al., “Still Image Compression Based on 2D Discrete Wavelet Transform”, Electron Lett, Vol.35, No.22, pp. 1934-1935 Oct 28 1999.

  18. Angiocardiographic digital still images compressed via irreversible methods: concepts and experiments, Luisa Portonia, , Carlo Combib, Giuseppe Pozzic, Francesco Pincirolia, d, Johannes Peter Fritsche and Rüdiger Brenneckee, International Journal of Medical Informatics, Volume 46, Issue 3, October 1997, Pages 185-204



Download 1.39 Mb.

Share with your friends:
1   ...   7   8   9   10   11   12   13   14   ...   18




The database is protected by copyright ©ininet.org 2024
send message

    Main page