Table 7. Summary of recovery of high and low value
tags for releases in 2006 and 20077
|
|
Released
|
Recovery Year
|
2006
|
2007
|
Not
recoveried
|
2006
|
$0
|
423
|
.
|
2
|
421
|
$100
|
1052
|
51
|
8
|
993
|
2007
|
$0
|
7
|
.
|
.
|
7
|
$100
|
915
|
.
|
.
|
915
|
-
Table 8. Estimates of survival and tag-recovery from the Hoenig et al (1988) model denoted by M(*) F(t) assuming
|
Instantaneous natural survival rate (M)
|
|
Estimate
|
SE
|
All years
|
0.084
|
0.026
|
|
|
|
Instantaneous Tag-recovery rates ()
|
Year
|
Estimate
|
SE
|
1995
|
0.036
|
0.008
|
1996
|
0.042
|
0.009
|
1997
|
0.048
|
0.009
|
1998
|
0.033
|
0.005
|
1999
|
0.036
|
0.004
|
2000
|
0.033
|
0.004
|
2001
|
0.026
|
0.004
|
2002
|
0.022
|
0.004
|
2003
|
0.024
|
0.004
|
2004
|
0.013
|
0.003
|
2005
|
0.006
|
0.002
|
2006
|
0.007
|
0.003
|
2007
|
0.004
|
0.002
|
Table 9. Goodness-of-fit (observed vs expected) test from Hoenig et al (1998) model M(*) F(t) as computed by Surviv
|
Release
Cohort
|
df
|
Chi-square
Goodness-of-fit
|
p-value
|
1995
|
11
|
18.6
|
0.068
|
1996
|
2
|
4.0
|
0.133
|
1997
|
8
|
8.4
|
0.393
|
1998
|
9
|
16.6
|
0.055
|
1999
|
8
|
19.4
|
0.012
|
2000
|
6
|
15.6
|
0.016
|
2001
|
6
|
17.6
|
0.007
|
Total
|
56
|
142.0
|
.000
|
Details at the individual cell level are available from the authors.
Appendix A
Surviv code used for Hoenig et al (1998) model.
Halibut tagging experiment
Hoenig et al (1998) model with constant survival rate and year varying recovery rates.
See Hoenig et al (1988) CJFAS 55, 1466-1476
Parameterized in term of M (instantaneous natural mortality rate) and
f(i) - instantaneous fishing mortality rate
It is assumed that reporting rate is 100% as no reward bands applied to estimate
this rate.
It is assumed that tag shedding is zero as no double tags were applied to estimate
this rate.
This code can be used directly with the online surviv program at Patuxent.
Visit: http://www.mbr-pwrc.usgs.gov/software/surviv.html
Releases took place from 1999 to 2005 (7 years).
Recoveries took place from 1999 to 2007 (13 years).
/* Number of parameters is 14
Parms 1 to 13 are the F
parm 14 is M */
------ Cut and paste code below into the code box at ---------
http://www.mbr-pwrc.usgs.gov/software/surviv.html
-----------------------------------------------------------------------
proc title 'Halibut model - Hoenig et al (1998) model M(*) F(t) .1';
proc model npar=14 addcell;
inline declare f(i)=s(i);
inline do i=1,7 /* loop for each band-year */;
inline prd=1;
inline sump=0;
inline do j=i,13 /* loop for each recovery year */;
inline tmp=f(j)+s(14);
inline srv=exp(-tmp);
inline p(j-i+1,i)=prd*(1-srv)*f(j)/tmp;
inline sump=sump+p(j-i+1,i);
inline prd=prd*srv;
inline end do;
inline p(14-i+1,i)=1-sump /* compute last cell (not recovered) */;
inline end do;
cohort=648 ; 22 :; 24 :; 29 :; 21 :; 20 :; 9 :; 7 :; 1 :;
3 :; 0 :; 0 :; 1 :; 0 :;
cohort=34 ; 0 :; 0 :; 0 :; 2 :; 0 :; 0 :; 2 :; 0 :; 0 :; 1 :; 1 :; 0 :;
cohort=200 ; 4 :; 3 :; 7 :; 6 :; 3 :; 2 :; 0 :; 1 :; 0 :; 0 :; 0 :;
cohort=887 ; 24 :; 36 :; 35 :; 15 :; 10 :; 7 :; 2 :; 4 :; 3 :; 1 :;
cohort=892 ; 12 :; 23 :; 27 :; 11 :; 12 :; 9 :; 3 :; 2 :; 0 :;
cohort=349 ; 1 :; 9 :; 9 :; 8 :; 2 :; 0 :; 0 :; 0 :;
cohort=799 ; 11 :; 19 :; 22 :; 12 :; 3 :; 5 :; 5 :;
labels;
s(1)=f(1);
s(2)=f(2);
s(3)=f(3);
s(4)=f(4);
s(5)=f(5);
s(6)=f(6);
s(7)=f(7);
s(8)=f(8);
s(9)=f(9);
s(10)=f(10);
s(11)=f(11);
s(12)=f(12);
s(13)=f(13);
s(14)=m;
/* Now to estimate the model */
proc estimate novar maxfn=32001 name=base;
initial; all=.1; s(14)=.2;
proc stop;
Share with your friends: |