Heart failure clinical Data Analysis



Download 428.37 Kb.
Page9/9
Date16.12.2020
Size428.37 Kb.
#54654
1   2   3   4   5   6   7   8   9
466 project
466 project

References:


[1] Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J. J., Sandhu, S., ... & Froelicher, V. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. The American journal of cardiology, 64(5), 304-310.

[2] Butler, J., Kalogeropoulos, A., Georgiopoulou, V., Belue, R., Rodondi, N., Garcia, M., ... & Newman, A. B. (2008). Incident heart failure prediction in the elderly: the health ABC heart failure score. Circulation: Heart Failure, 1(2), 125-133.

[3] Förhécz, Z., Gombos, T., Borgulya, G., Pozsonyi, Z., Prohászka, Z., & Jánoskuti, L. (2009). Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. American heart journal, 158(4), 659-666.

[4] Chicco, D., & Jurman, G. (2020). Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC medical informatics and decision making, 20(1), 16.

[5] Ahmad, T., Munir, A., Bhatti, S. H., Aftab, M., & Raza, M. A. (2017). Survival analysis of heart failure patients: A case study. PloS one, 12(7), e0181001.

[6] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.

[7] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297

[8] Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14(1), 5-16



[9] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3), 389-422.

[10] Chapelle, O., Haffner, P., & Vapnik, V. N. (1999). Support vector machines for histogram-based image classification. IEEE transactions on Neural Networks, 10(5), 1055-1064.
Download 428.37 Kb.

Share with your friends:
1   2   3   4   5   6   7   8   9




The database is protected by copyright ©ininet.org 2024
send message

    Main page