Chapter 6: stability and control


Figure 6.5 Time Histories of Systems with Positive, Neutral, and Negative Dynamic Stability



Download 2.68 Mb.
Page4/25
Date28.05.2018
Size2.68 Mb.
#50510
1   2   3   4   5   6   7   8   9   ...   25

Figure 6.5 Time Histories of Systems with Positive, Neutral, and Negative Dynamic Stability
The springs and shock absorbers on an automobile are familiar examples of systems with positive static and dynamic stability. When the shock absorbers are new, the system does not oscillate when the car hits a bump. The system is said to be highly damped. As the shock absorbers wear out, the car begins to oscillate when it hits a bump, and the oscillations get worse and take longer to die out as the shock absorbers get more worn out. The system is then said to be lightly damped.

A system which has positive static stability but no damping at all continues to oscillate without ever decreasing the magnitude or amplitude of the oscillation. It is said to have neutral dynamic stability because over time the system does not get any closer to or farther from equilibrium. The time history of a system with positive static stability but neutral dynamic stability is shown on the left-hand graph of Figure 6.5 (b). On the right side of Figure 6.5 (b) is a time history of a system with neutral static and dynamic stability. When displaced from its intial condition, it is still in equilibrium, like the ball on the flat surface, so it has no tendency to return to the zero-displacement condition.


The time histories in Figure 6.5 (c) are for systems with negative dynamic stability. The one on the left has negative static stability as well, so it initially moves away from equilibrium and keeps going. The time history on the right is for a system which is statically stable, so it initially moves toward equilibrium, but the amplitude of each overshoot is greater than the previous one. Over time, the system gets further and further from equilibrium, even though it moves through equilibrium twice during each complete oscillation.

6.3 LONGITUDINAL CONTROL ANALYSIS
The analysis of the problem of adjusting pitch control to change and stabilize the aircraft’s pitch attitude is called pitch control analysis or longitudinal control analysis. The term “longitudinal” is used for this analysis because the moment arms for the pitch control surfaces are primarily distances along the aircraft’s longitudinal axis. Also, the conditions required for longitudinal trim (the case where moments about the lateral axis sum to zero) are affected by the airplane’s velocity, which is primarily in the longitudinal direction.
The complete analysis of the static and dynamic stability and control of an aircraft in all six degrees of freedom is a broad and complex subject requiring an entire book to treat properly. A sense of how such problems are framed and analyzed can be obtained from studying the analysis of the longitudinal static stability and control problem. The longitudinal problem involves two degrees of translational freedom, the x and z directions, and one degree of freedom in rotation about the y axis. The static longitudinal stability and control problem is normally the most important for conceptual aircraft design. The dynamic longitudinal stability problem and the static and dynamic lateral-directional (translation in the y direction and coupled rotation about the x and z axes) stability and control problems are beyond the scope of this text.
Longitudinal Trim

Figure 6.6 illustrates the longitudinal trim problem for a conventional tail-aft airplane. The aircraft’s center of gravity is marked by the circle with alternating black and white quarters. The lift forces of the wing and horizontal tail are shown acting at their respective aerodynamic centers. The moment about the wing’s aerodynamic center due to the shape of its airfoil is also shown. The upper-case symbols L, Lt, and Mac are used as in Chapter 4 for wing lift, tail lift, and wing moment respectively to indicate that they are forces and moments produced by three-dimensional surfaces, not airfoils. The horizontal tail is assumed to have a symmetrical airfoil, so that the moment about its aerodynamic center is zero. For consistency with the way two-dimensional airfoil data is presented, the locations of the wing’s aerodynamic center, xac, and the whole aircraft’s center of gravity, xcg, are measured relative to the leading edge of the wing root. The distance of the aerodynamic center of the horizontal tail from the aircraft’s center of gravity is given the symbol lt.


Summing the moments shown in Figure 6.6 about the aircraft’s center of gravity yields:

(6.1)

Figure 6.6 Forces, Moments, and Geometry for the Longitudinal Trim Problem

The moments in (6.1) must sum to zero if the aircraft is trimmed. For steady flight, the forces also sum to zero. Summing in the vertical direction:



(6.2)

Together, (6.1) and (6.2) provide a system of two equations with two unknowns (since the weight is usually known and the moment about the aerodynamic center does not change with lift) which can be solved simultaneously to yield the lift required from each surface for equilibrium. In practice, the elevator attached to the horizontal tail is deflected to provide the necessary lift from the tail so that the sum of the moments is zero when the aircraft is at the angle of attack required to make the sum of the forces zero. Note that for aircraft configurations such as the one shown in Figure 6.6, which have the horizontal tail behind the main wing, trim in level flight normally is achieved for positive values of Lt, so that the horizontal tail contributes to the total lift of the aircraft. Note also that (6.1) and (6.2) are applicable only to the aircraft configuration for which they were derived. Similar relations may be derived for flying wing aircraft, airplanes with canards, etc.



Control Authority

If the aircraft’s geometry and flight conditions are known, then the lift coefficient required from the wing and pitch control surfaces may be determined using L = CL q S when (6.1) and (6.2) are solved for L and Lt. If any of the required CL values are greater than Clmax for their respective surfaces, then the aircraft does not have sufficient control authority to trim in that maneuver for those conditions. To remedy this situation, the aircraft designer must either increase the size of the deficient control surface or add high-lift devices to it to increase its Clmax . Figure 6.7 shows a McDonnell-Douglas F-4E Phantom II multi-role jet fighter. Note that the stabilators on this aircraft have had leading-edge slots added to them to increase their Clmax and hence their control authority.




Download 2.68 Mb.

Share with your friends:
1   2   3   4   5   6   7   8   9   ...   25




The database is protected by copyright ©ininet.org 2024
send message

    Main page