For foreign first-year students for autumn term Module Methodical elaboration for practice class on human anatomy for foreign first-year students for autumn term


Branches.—In the interval between the adjacent transverse processes each lumbar artery gives off a posterior ramus



Download 2.47 Mb.
Page45/59
Date31.07.2017
Size2.47 Mb.
#25866
1   ...   41   42   43   44   45   46   47   48   ...   59

Branches.—In the interval between the adjacent transverse processes each lumbar artery gives off a posterior ramus which is continued backward between the transverse processes and is distributed to the muscles and skin of the back; it furnishes a spinal branch which enters the vertebral canal and is distributed in a manner similar to the spinal branches of the posterior rami of the intercostal arteries. Muscular branches are supplied from each lumbar artery and from its posterior ramus to the neighboring muscles.

The middle sacral artery (a. sacralis media) is a small vessel, which arises from the back of the aorta, a little above its bifurcation. It descends in the middle line in front of the fourth and fifth lumbar vertebræ, the sacrum and coccyx, and ends in the glomus coccygeum (coccygeal gland). From it, minute branches are said to pass to the posterior surface of the rectum. On the last lumbar vertebra it anastomoses with the lumbar branch of the iliolumbar artery; in front of the sacrum it anastomoses with the lateral sacral arteries, and sends offsets into the anterior sacral foramina. It is crossed by the left common iliac vein, and is accompanied by a pair of venæ comitantes; these unite to form a single vessel, which opens into the left common iliac vein.


7. Methodic of class work:

a) interrogation of the students on the home task;

b) study of samples (topic according to the plan);

c) fill in the protocol of current lesson;

d) checking and signing the protocols by teacher.
8. Forms and methods of the self-checking.

Questions:


Situational tasks:
Tests.
9. The illustrative material: tables, samples.

10. Sources of the information: Human anatomy

11. The program of self-preparation of students:

1. To learn the appropriate sections under the textbook

2. To consider preparations and to study them according to the plan of practical class.

3. To fill in the report of practical class.

4. To be able to show on a preparation of the Abdominal Aorta.

The author: teacher Mashtalir M.A.


The documents is approved by the department members on the meeting that took place

on _________________ 200, the report N ______.



Methodical elaboration for practice class on human anatomy

for foreign first-year students

1. The topic: The Portal System of Veins.

2. The place: classroom of the department of human anatomy.

3. The aim: to know the structure of the Portal System of Veins.

4. The professional orientation of students: The knowledge of this topic are necessary for doctors of all specialities, it represents special interest for therapists.

5. The basic of knowledge:

6. The plan of the practice class:

A. Checking of the home task: interrogation or the test control – 30 min

B. Summary lecture on the topic by teacher – 20 min

а) The portal vein;

b) The tributaries of the portal vein;

c) The Lienal Vein;



  1. The Superior Mesenteric Vein;

  2. Parumbilical Veins;

C. Self-taught class– 100 min

Working plan:



The Portal System of Veins

The portal system includes all the veins which drain the blood from the abdominal part of the digestive tube (with the exception of the lower part of the rectum) and from the spleen, pancreas, and gall-bladder. From these viscera the blood is conveyed to the liver by the portal vein. In the liver this vein ramifies like an artery and ends in capillary-like vessels termed sinusoids, from which the blood is conveyed to the inferior vena cava by the hepatic veins. From this it will be seen that the blood of the portal system passes through two sets of minute vessels, viz., (a) the capillaries of the digestive tube, spleen, pancreas, and gall-bladder; and (b) the sinusoids of the liver. In the adult the portal vein and its tributaries are destitute of valves; in the fetus and for a short time after birth valves can be demonstrated in the tributaries of the portal vein; as a rule they soon atrophy and disappear, but in some subjects they persist in a degenerate form.

The portal vein (vena portæ) is about 8 cm. in length, and is formed at the level of the second lumbar vertebra by the junction of the superior mesenteric and lienal veins, the union of these veins taking place in front of the inferior vena cava and behind the neck of the pancreas. It passes upward behind the superior part of the duodenum and then ascends in the right border of the lesser omentum to the right extremity of the porta hepatis, where it divides into a right and a left branch, which accompany the corresponding branches of the hepatic artery into the substance of the liver. In the lesser omentum it is placed behind and between the common bile duct and the hepatic artery, the former lying to the right of the latter. It is surrounded by the hepatic plexus of nerves, and is accompanied by numerous lymphatic vessels and some lymph glands. The right branch of the portal vein enters the right lobe of the liver, but before doing so generally receives the cystic vein. The left branch, longer but of smaller caliber than the right, crosses the left sagittal fossa, gives branches to the caudate lobe, and then enters the left lobe of the liver. As it crosses the left sagittal fossa it is joined in front by a fibrous cord, the ligamentum teres (obliterated umbilical vein), and is united to the inferior vena cava by a second fibrous cord, the ligamentum venosum (obliterated ductus venosus).

Tributaries.—The tributaries of the portal vein are:

Lienal.


Pyloric.

Superior Mesenteric.

Cystic.

Coronary.



Parumbilical.

The Lienal Vein (v. lienalis; splenic vein) commences by five or six large branches which return the blood from the spleen. These unite to form a single vessel, which passes from left to right, grooving the upper and back part of the pancreas, below the lineal artery, and ends behind the neck of the pancreas by uniting at a right angle with the superior mesenteric to form the portal vein. The lienal vein is of large size, but is not tortuous like the artery.



Tributaries.—The lineal vein receives the short gastric veins, the left gastroepiploic vein, the pancreatic veins, and the inferior mesenteric veins.

The short gastric veins (vv. gastricæ breves), four or five in number, drain the fundus and left part of the greater curvature of the stomach, and pass between the two layers of the gastrolienal ligament to end in the lienal vein or in one of its large tributaries.

The left gastroepiploic vein (v. gastroepiploica sinistra) receives branches from the antero-superior and postero-inferior surfaces of the stomach and from the greater omentum; it runs from right to left along the greater curvature of the stomach and ends in the commencement of the lienal vein.

The pancreatic veins (vv. pancreaticæ) consist of several small vessels which drain the body and tail of the pancreas, and open into the trunk of the lienal vein.

The inferior mesenteric vein (v. mesenterica inferior) returns blood from the rectum and the sigmoid, and descending parts of the colon. It begins in the rectum as the superior hemorrhoidal vein, which has its origin in the hemorrhoidal plexus, and through this plexus communicates with the middle and inferior hemorrhoidal veins. The superior hemorrhoidal vein leaves the lesser pelvis and crosses the left common iliac vessels with the superior hemorrhoidal artery, and is continued upward as the inferior mesenteric vein. This vein lies to the left of its artery, and ascends behind the peritoneum and in front of the left Psoas major; it then passes behind the body of the pancreas and opens into the lienal vein; sometimes it ends in the angle of union of the lienal and superior mesenteric veins.

Tributaries.—The inferior mesenteric vein receives the sigmoid veins from the sigmoid colon and iliac colon, and the left colic vein from the descending colon and left colic flexure.

The Superior Mesenteric Vein (v. mesenterica superior) returns the blood from the small intestine, from the cecum, and from the ascending and transverse portions of the colon. It begins in the right iliac fossa by the union of the veins which drain the terminal part of the ileum, the cecum, and vermiform process, and ascends between the two layers of the mesentery on the right side of the superior mesenteric artery. In its upward course it passes in front of the right ureter, the inferior vena cava, the inferior part of the duodenum, and the lower portion of the head of the pancreas. Behind the neck of the pancreas it unites with the lienal vein to form the portal vein.



Tributaries.—Besides the tributaries which correspond with the branches of the superior mesenteric artery, viz., the intestinal, ileocolic, right colic, and middle colic veins, the superior mesenteric vein is joined by the right gastroepiploic and pancreaticoduodenal veins.

The right gastroepiploic vein (v. gastroepiploica dextra) receives branches from the greater omentum and from the lower parts of the antero-superior and posteroinferior surfaces of the stomach; it runs from left to right along the greater curvature of the stomach between the two layers of the greater omentum.

The pancreaticoduodenal veins (vv. pancreaticoduodenales) accompany their corresponding arteries; the lower of the two frequently joins the right gastroepiploic vein.

The Coronary Vein (v. coronaria ventriculi; gastric vein) derives tributaries from both surfaces of the stomach; it runs from right to left along the lesser curvature of the stomach, between the two layers of the lesser omentum, to the esophageal opening of the stomach, where it receives some esophageal veins. It then turns backward and passes from left to right behind the omental bursa and ends in the portal vein.

The Pyloric Vein is of small size, and runs from left to right along the pyloric portion of the lesser curvature of the stomach, between the two layers of the lesser omentum, to end in the portal vein.

The Cystic Vein (v. cystica) drains the blood from the gall-bladder, and, accompanying the cystic duct, usually ends in the right branch of the portal vein.



Parumbilical Veins (vv. parumbilicales).—In the course of the ligamentum teres of the liver and of the middle umbilical ligament, small veins (parumbilical) are found which establish an anastomosis between the veins of the anterior abdominal wall and the portal, hypogastric, and iliac veins. The best marked of these small veins is one which commences at the umbilicus and runs backward and upward in, or on the surface of, the ligamentum teres between the layers of the falciform ligament to end in the left portal vein.

Collateral venous circulation to relieve portal obstruction in the liver may be effected by communications between (a) the gastric veins and the esophageal veins which often project as a varicose bunch into the stomach, emptying themselves into the hemiazygos vein; (b) the veins of the colon and duodenum and the left renal vein; (c) the accessory portal system of Sappey, branches of which pass in the round and falciform ligaments (particularly the latter) to unite with the epigastric and internal mammary veins, and through the diaphragmatic veins with the azygos; a single large vein, shown to be a parumbilical vein, may pass from the hilus of the liver by the round ligament to the umbilicus, producing there a bunch of prominent varicose veins known as the caput medusæ; (d) the veins of Retzius, which connect the intestinal veins with the inferior vena cava and its retroperitoneal branches; (e) the inferior mesenteric veins, and the hemorrhoidal veins that open into the hypogastrics; (f) very rarely the ductus venosus remains patent, affording a direct connection between the portal vein and the inferior vena cava.


7. Methodic of class work:

a) interrogation of the students on the home task;

b) study of samples (topic according to the plan);

c) fill in the protocol of current lesson;

d) checking and signing the protocols by teacher.
8. Forms and methods of the self-checking.

Questions:


Situational tasks:
Tests.
9. The illustrative material: tables, samples.

10. Sources of the information: Human anatomy

11. The program of self-preparation of students:

1. To learn the appropriate sections under the textbook

2. To consider preparations and to study them according to the plan of practical class.

3. To fill in the report of practical class.

4. To be able to show on a preparation of the Portal System of Veins.


Methodical elaboration for practice class on human anatomy

for foreign second-year students for autumn term Module 2.
Methodical elaboration for practice class on human anatomy

for foreign first-year students

1. The topic: The Brain, the Telencephalon, the Medulla Oblongata.

2. The place: classroom of the department of human anatomy.

3. The aim: to know the structure and topography of the Brain, the Telencephalon, the Medulla Oblongata.

4. The professional orientation of students: The knowledge of this topic are necessary for doctors of all specialities, it represents special interest for therapists.

5. The basic of knowledge:

6. The plan of the practice class:

A. Checking of the home task: interrogation or the test control – 30 min

B. Summary lecture on the topic by teacher – 20 min

а) General Considerations and Divisions

b) The Telencephalon

c) The Cerebral Hemispheres



  1. Surfaces of the Cerebral Hemispheres

  2. The Medulla Oblongata

C. Self-taught class– 100 min

Working plan:



The Brain or Encephalon

General Considerations and Divisions.—The brain, is contained within the cranium, and constitutes the upper, greatly expanded part of the central nervous system. In its early embryonic condition it consists of three hollow vesicles, termed the hind-brain or rhombencephalon, the mid-brain or mesencephalon, and the fore-brain or prosencephalon; and the parts derived from each of these can be recognized in the adult Thus in the process of development the wall of the hind-brain undergoes modification to form the medulla oblongata, the pons, and cerebellum, while its cavity is expanded to form the fourth ventricle. The mid-brain forms only a small part of the adult brain; its cavity becomes the cerebral aqueduct (aqueduct of Sylvius), which serves as a tubular communication between the third and fourth ventricles; while its walls are thickened to form the corpora quadrigemina and cerebral peduncles. The fore-brain undergoes great modification: its anterior part or telencephalon expands laterally in the form of two hollow vesicles, the cavities of which become the lateral ventricles, while the surrounding walls form the cerebral hemispheres and their commissures; the cavity of the posterior part or diencephalon forms the greater part of the third ventricle, and from its walls are developed most of the structures which bound that cavity.
The Telencephalon.—The telencephalon includes: (1) the cerebral hemispheres with their cavities, the lateral ventricles; and (2) the pars optica hypothalami and the anterior portion of the third ventricle (already described under the diencephalon). As previously stated, each cerebral hemisphere may be divided into three fundamental parts, viz., the rhinencephalon, the corpus striatum, and the neopallium. The rhinencephalon, associated with the sense of smell, is the oldest part of the telencephalon, and forms almost the whole of the hemisphere in some of the lower animals, e. g., fishes, amphibians, and reptiles. In man it is rudimentary, whereas the neopallium undergoes great development and forms the chief part of the hemisphere.

The Cerebral Hemispheres.—The cerebral hemispheres constitute the largest part of the brain, and, when viewed together from above, assume the form of an ovoid mass broader behind than in front, the greatest transverse diameter corresponding with a line connecting the two parietal eminences. The hemispheres are separated medially by a deep cleft, named the longitudinal cerebral fissure, and each possesses a central cavity, the lateral ventricle.

The Longitudinal Cerebral Fissure (fissura cerebri longitudinalis; great longitudinal fissure) contains a sickle-shaped process of dura mater, the falx cerebri. It front and behind, the fissure extends from the upper to the under surfaces of the hemispheres and completely separates them, but its middle portion separates them for only about one-half of their vertical extent; for at this part they are connected across the middle line by a great central white commissure, the corpus callosum.

In a median sagittal section the cut corpus callosum presents the appearance of a broad, arched band. Its thick posterior end, termed the splenium, overlaps the mid-brain, but is separated from it by the tela chorioidea of the third ventricle and the pineal body. Its anterior curved end, termed the genu, gradually tapers into a thinner portion, the rostrum, which is continued downward and backward in front of the anterior commissure to join the lamina terminalis. Arching backward from immediately behind the anterior commissure to the under surface of the splenium is a second white band named the fornix: between this and the corpus callosum are the laminæ and cavity of the septum pellucidum.

Surfaces of the Cerebral Hemispheres.—Each hemisphere presents three surfaces: lateral, medial, and inferior.

The lateral surface is convex in adaptation to the concavity of the corresponding half of the vault of the cranium. The medial surface is flat and vertical, and is separated from that of the opposite hemisphere by the great longitudinal fissure and the falx cerebri. The inferior surface is of an irregular form, and may be divided into three areas: anterior, middle, and posterior. The anterior area, formed by the orbital surface of the frontal lobe, is concave, and rests on the roof of the orbit and nose; the middle area is convex, and consists of the under surface of the temporal lobe: it is adapted to the corresponding half of the middle cranial fossa. The posterior area is concave, directed medialward as well as downward, and is named the tentorial surface, since it rests upon the tentorium cerebelli, which intervenes between it and the upper surface of the cerebellum.

These three surfaces are separated from each other by the following borders: (a) supero-medial, between the lateral and medial surfaces; (b) infero-lateral, between the lateral and inferior surfaces; the anterior part of this border separating the lateral from the orbital surface, is known as the superciliary border; (c) medial occipital, separating the medial and tentorial surfaces; and (d) medial orbital, separating the orbital from the medial surface. The anterior end of the hemisphere is named the frontal pole; the posterior, the occipital pole; and the anterior end of the temporal lobe, the temporal pole. About 5 cm. in front of the occipital pole on the infero-lateral border is an indentation or notch, named the preoccipital notch.

The surfaces of the hemispheres are moulded into a number of irregular eminences, named gyri or convolutions, and separated by furrows termed fissures and sulci. The furrows are of two kinds, complete and incomplete. The former appear early in fetal life, are few in number, and are produced by infoldings of the entire thickness of the brain wall, and give rise to corresponding elevations in the interior of the ventricle. They comprise the hippocampal fissure, and parts of the calcarine and collateral fissures. The incomplete furrows are very numerous, and only indent the subjacent white substance, without producing any corresponding elevations in the ventricular cavity.

The gyri and their intervening fissures and the sulci are fairly constant in their arrangement; at the same time they vary within certain limits, not only in different individuals, but on the two hemispheres of the same brain. The convoluted condition of the surface permits of a great increase of the gray matter without the sacrifice of much additional space. The number and extent of the gyri, as well as the depth of the intervening furrows, appear to bear a direct relation to the intellectual powers of the individual.

Certain of the fissures and sulci are utilized for the purpose of dividing the hemisphere into lobes, and are therefore termed interlobular; included under this category are the lateral cerebral, parietoöccipital, calcarine, and collateral fissures, the central and cingulate sulci, and the sulcus circularis.

The Lateral Cerebral Fissure (fissura cerebri lateralis [Sylvii]; fissure of Sylvius) is a well-marked cleft on the inferior and lateral surfaces of the hemisphere, and consists of a short stem which divides into three rami. The stem is situated on the base of the brain, and commences in a depression at the lateral angle of the anterior perforated substance. From this point it extends between the anterior part of the temporal lobe and the orbital surface of the frontal lobe, and reaches the lateral surface of the hemisphere. Here it divides into three rami: an anterior horizontal, an anterior ascending, and a posterior. The anterior horizontal ramus passes foward for about 2.5 cm. into the inferior frontal gyrus, while the anterior ascending ramus extends upward into the same convolution for about an equal distance. The posterior ramus is the longest; it runs backward and slightly upward for about 7 cm., and ends by an upward inflexion in the parietal lobe.

The Central Sulcus (sulcus centralis [Rolandi]; fissure of Rolando; central fissure) is situated about the middle of the lateral surface of the hemisphere, and begins in or near the longitudinal cerebral fissure, a little behind its mid-point. It runs sinuously downward and forward, and ends a little above the posterior ramus of the lateral fissure, and about 2.5 cm. behind the anterior ascending ramus of the same fissure. It described two chief curves: a superior genu with its concavity directed forward, and an inferior genu with its concavity directed backward. The central sulcus forms an angle opening forward of about 70° with the median plane.



The Parietoöccipital Fissure (fissura parietoöccipitalis).—Only a small part of this fissure is seen on the lateral surface of the hemisphere, its chief part being on the medial surface.

The lateral part of the parietoöccipital fissure is situated about 5 cm. in front of the occipital pole of the hemisphere, and measures about 1.25 cm. in length.

The medial part of the parietoöccipital fissure runs downward and forward as a deep cleft on the medial surface of the hemisphere, and joins the calcarine fissure below and behind the posterior end of the corpus callosum. In most cases it contains a submerged gyrus.

The Calcarine Fissure (fissura calcarina) is on the medial surface of the hemisphere. It begins near the occipital pole in two converging rami, and runs forward to a point a little below the splenium of the corpus callosum, where it is joined at an acute angle by the medial part of the parietoöccipital fissure. The anterior part of this fissure gives rise to the prominence of the calcar avis in the posterior cornu of the lateral ventricle.

The Cingulate Sulcus (sulcus cinguli; callosomarginal fissure) is on the medial surface of the hemisphere; it begins below the anterior end of the corpus callosum and runs upward and forward nearly parallel to the rostrum of this body and, curving in front of the genu, is continued backward above the corpus callosum, and finally ascends to the supero-medial border of the hemisphere a short distance behind the upper end of the central sulcus. It separates the superior frontal from the cingulate gyrus.

The Collateral Fissure (fissura collateralis) is on the tentorial surface of the hemisphere and extends from near the occipital pole to within a short distance of the temporal pole. Behind, it lies below and lateral to the calcarine fissure, from which it is separated by the lingual gyrus; in front, it is situated between the hippocampal gyrus and the anterior part of the fusiform gyrus.

The Sulcus Circularis (circuminsular fissure) is on the lower and lateral surfaces of the hemisphere: it surrounds the insula and separates it from the frontal, parietal, and temporal lobes.



Download 2.47 Mb.

Share with your friends:
1   ...   41   42   43   44   45   46   47   48   ...   59




The database is protected by copyright ©ininet.org 2024
send message

    Main page