Internship Guideline



Download 230.5 Kb.
Page11/11
Date25.01.2023
Size230.5 Kb.
#60454
1   2   3   4   5   6   7   8   9   10   11
seminar one
Untitled 1

References


. www.biologyreference.com. Retrieved (2016) "Secondary metabolites - Knowledge Encyclopedia"
Jones ME (1953). "Albrecht Kossel, a biographical sketch". The Yale Journal of Biology and Medicine26 (1): 80–97. 
Bourgaud F, Gravot A, Milesi S, Gontier E (2001). "Production of plant secondary metabolites: a historical perspective". Plant Science161 (5): 839–851.
Pichersky E, Gang DR (2000). "Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective". Trends in Plant Science5 (10): 439–45. 
Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009). "Genomic islands: tools of bacterial horizontal gene transfer and evolution". FEMS Microbiology Reviews33 (2): 376–93.
Jensen LM, Wallis IR, Marsh KJ, Moore BD, Wiggins NL, Foley WJ ( 2014). "Four species of arboreal folivore show differential tolerance to a secondary metabolite". Oecologia176 (1): 251–8. .
Croteau R, Kutchan TM, Lewis NG (2012). "Chapter 24: Natural products (secondary metabolites)". In Civjan N (ed.). Natural products in chemical biology. Hoboken, New Jersey: Wiley. pp. 1250–1319. 
Passari, A. K., Mishra, V. K., Singh, G., Singh, P., Kumar, B., Gupta, V. K., et al.(2017). Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci. Rep. 7:11809.
Pettit, R. K. (2011). Small-molecule elicitation of microbial secondary metabolites. Microb.Biotechnol.4,471–478.
Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., et al. (2010) Production of microbial secondary metabolites: regulation by the carbon source. Crit. Rev. Microbial. 36, 146–167.
O‘Brien, J., and Wright, G. D. (2011) An ecological perspective of microbial secondary metabolism. Curr. Opin. Biotechnol. 22, 552–558.
Zothanpuia, Passari, A K, Leo, V. V., Kumar, B., Chnadra, P., Nayak, C., et al.
(2018). Bioprospection of actinobacteria derived from freshwater sediments for
their potential to produce antimicrobial compounds. BMC Microb. Cell Fact.
E. J. Caldera, M. G. Chevrette, B. R. McDonald and C. R. Currie, Appl. Environ. Microbiol., 2019, 85, 1–13.
2 M. G. Chevrette, C. M. Carlson, H. E. Ortega, C. Thomas, G. E. Ananiev, K. J. Barns, A. J. Book, J. Cagnazzo, C. Carlos, W. Flanigan, K. J. Grubbs, H. A. Horn, F. M. Hoffmann, J. L.
Klassen, J. J. Knack, G. R. Lewin, B. R. McDonald, L. Muller, W. G. P. Melo, A. A. PintoTom´as, A. Schmitz, E. Wendt-Pienkowski, S. Wildman, M. Zhao, F. Zhang, T. S. Bugni, D. R. Andes, M. T. Pupo and C. R. Currie, Nat. Commun., 2019, 10, 516.
3 M. D. Tianero, J. N. Balaich and M. S. Donia, Nat. Microbiol., 2019, 4, 1149–1159.
4 J. Zan, Z. Li, M. D. Tianero, J. Davis, R. T. Hill and M. S. Donia, Science, 2019, 364, eaaw6732.
5 J. J. Scott, D.-C. Oh, M. C. Yuceer, K. D. Klepzig, J. Clardy and C. R. Currie, Science, 2008, 322, 63.
6 M. F. Traxler, M. R. Seyedsayamdost, J. Clardy and R. Kolter, Mol. Microbiol., 2012, 86, 628–644.
7 D. Dar, L. S. Thomashow, D. M. Weller and D. K. Newman, eLife, 2020, 9, e59726.
8 P. Vaz Jauri and L. L. Kinkel, FEMS Microbiol. Ecol., 2014, 90,264–275.
9 A. Essarioui, N. LeBlanc, L. Otto-Hanson, D. C. Schlatter, H. C. Kistler and L. L. Kinkel, Environ. Microbiol., 2020, 22, 976–985.
10 L. L. Kinkel, D. C. Schlatter, K. Xiao and A. D. Baines, ISME J., 2014, 8, 249–256.
11 D. M. Becker, L. L. Kinkel and J. L. Schottel, Can. J. Microbiol., 1997, 43, 985–990.
12 P. Vaz Jauri, M. G. Bakker, C. E. Salomon and L. L. Kinkel, PLoS One, 2013, 8, 8–13.
13 G. L. Challis and D. a. Hopwood, Proc. Natl. Acad. Sci. U. S.A., 2003, 100, 14555–14561.
Biotechnol., 1996, 17, 170–178.
D. W. Denning and M. J. Bromley, Science, 2015, 347, 1414–1416.
G. C. Merhoff and J. M. Porter, Ann. Surg., 1974, 180, 773.
N. Bradburn, R. D. Coker and G. Blunden, Phytochemistry, 1994, 35, 817.
S. Brase, A. Encinas, J. Keck and C. F. Nising, Chem. Rev., 2009, 109, 3903–3990.
J. W. Bennett and M. Klich, Clin. Microbiol. Rev., 2003, 16, 497–516.
M. C. Fisher, D. A. Henk, C. J. Briggs, J. S. Brownstein, L. C. Madoff, S. L. McCraw and S. J. Gurr, Nature, 2013, 484, 186–194.
M. Blackwell, Am. J. Bot., 2011, 98, 426–438.
G. F. Bills and J. B. Gloer, Microbiol. Spectrum, 2016, 4, UNSP FUNK-0009-2016.
Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol
11(1):21–32.
Keller NP (2015) Translating biosynthetic gene clusters into fungal armor and
weaponry. Nat Chem Biol 11(9):671–677.
Yin W, Keller NP (2011) Transcriptional regulatory elements in fungal secondary
metabolism. J Microbiol 49(3):329–339.
Wiemann P, Keller NP (2014) Strategies for mining fungal natural products. J Ind
Microbiol Biotechnol 41(2):301–313.
Nützmann H-W, Schroeckh V, Brakhage AA (2012) Regulatory cross talk and microbial
induction of fungal secondary metabolite gene clusters. Methods in Enzymology, ed
David AH (Academic, New York), Vol 517, pp 325–341.
Aghcheh RK, Kubicek CP (2015) Epigenetics as an emerging tool for improvement of
fungal strains used in biotechnology. Appl Microbiol Biotechnol 99(15):6167–6181.
Mazzoli, R. (2014). “Neuro-active compounds produced by probiotics. Towards amicrobiota (gut-) brain axis control?” in Interactive Probiotics, ed E. Pessione (Boca Raton, FL: CRC Press; Taylor & Francis Group), 148–176.
Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., et al. (2012). Host-gut microbiota metabolic interactions. Science 336, 1262–1267.
O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., and Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48. Pessione, E. (2012). Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front. Cell. Infect. Microbiol. 2:86.
World Health Organization (2014). Antimicrobial Resistance: 2014 Global Report
on Surveillance.
Geneva: World Health Organization.
Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K. M., Wertheim, H. F. L., Sumpradit, N., et al. (2013). Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098.
Lyte, M., and Freestone, P. P. E. (2010). Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. New York, NY: Springer.
Mayer, E. A. (2011). Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12, 453–466.
Cani, P. D., and Knauf, C. (2016). How gut microbes talk to organs: the role of endocrine and nervous routes. Mol. Metab. 5, 743–752.
Cryan, J. F., and Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712.

Halang, P., Toulouse, C., Geißel, B., Michel, B., Flauger, B., Müller, M., et al. (2015).


Response of Vibrio cholerae to the catecholamine hormones Epinephrine and Norepinephrine. J. Bacteriol. 197, 3769–3778.
Hughes, D. T., and Sperandio, V. (2008). Inter-kingdom signalling: communication between bacteria and their hosts. Nat. Rev. Microbiol. 6,111–120.
Kelly, J. R., Kennedy, P. J., Cryan, J. F., Dinan, T. G., Clarke, G., and Hyland, N. P. (2015). Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci.
Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66: 447–459.
Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol 3: 937–947.
Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal Bioanal Chem 395: 1225–1242.
Frisvad JC, Rank C, Nielsen KF, Larsen TO (2009) Metabolomics of Aspergillus fumigatus. Med Mycol 47: Suppl 1S53–71.
Gardiner DM, Waring P, Howlett BJ (2005) The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology 151: 1021–1032.
Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12: 310–350.
Lewis RE, Wiederhold NP, Lionakis MS, Prince RA, Kontoyiannis DP (2005) Frequency and species distribution of gliotoxin-producing Aspergillus isolates recovered from patients at a tertiary-care cancer center. J Clin Microbiol 43: 6120–6122.
Kupfahl C, Michalka A, Lass-Floerl C, Fischer G, Haase G, et al. (2008) Gliotoxin production by clinical and environmental Aspergillus fumigatus strains. Int J Med Microbiol 298: 319–327.
Patron N, Waller R, Cozijnsen A, Straney D, Gardiner D, et al. (2007) Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol Biol 7: 174.
Kwon-Chung KJ, Sugui JA (2009) What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus? Med Mycol 47: Suppl 1S97–103.
Gardiner DM, Howlett BJ (2005) Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 248: 241–248.
Spikes S, Xu R, Nguyen CK, Chamilos G, Kontoyiannis DP, et al. (2008) Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J Infect Dis 197: 479–486.
Reilly HC, Schatz A, Waksman SA (1945) Antifungal properties of antibiotic substances. J Bacteriol 49: 585–594.
Groll AH, Shah PM, Mentzel C, Schneider M, Just-Nuebling G, et al. (1996) Trends in the postmortem epidemiology of invasive fungal infections at a University Hospital. J Infect 33: 23–32.
Gokulan K, Khare S, Cerniglia C (2014-12-31). "Metabolic Pathways: Production of Secondary Metabolites of Bacteria". Encyclopedia of Food Microbiology. pp. 561–569. ISBN 978-0-12-384733-1. Retrieved 2020-04-10.

Are, C.; McMasters, K.M.; Giuliano, A.; Yanala, U.; Balch, C.; Anderson, B.O.; Berman, R.; Audisio, R.;bKovacs, T.; Savant, D. Global forum of cancer surgeons: Perspectives on barriers to surgical care for cancer patients and potential solutions. Ann. Surg. Oncol 2019, 26, 1577–1582.


Chalbatani, G.M.; Dana, H.; Memari, F.; Gharagozlou, E.; Ashjaei, S.; Kheirandish, P.; Marmari, V.; Mahmoudzadeh, H.; Mozayani, F.; Maleki, A.R. Biological function and molecular mechanism of pirna incancer. Pract. Lab. Med. 2019, 13, e00113.
Tan, L.T.-H.; Chan, K.-G.; Pusparajah, P.; Yin, W.-F.; Khan, T.M.; Lee, L.-H.; Goh, B.-H. Mangrove derived streptomyces sp. Mum265 as a potential source of antioxidant and anticolon-cancer agents. BMC Microbiol. 2019, 19, 38.
Levine, O.; Zbuk, K. Colorectal cancer in adolescents and young adults: Defining a growing threat. Pediatr. Blood Cancer 2019, 66, e27941.
Ambrosone, C.B.; Freudenheim, J.L.; Graham, S.; Marshall, J.R.; Vena, J.E.; Brasure, J.R.; Michalek, A.M.; Laughlin, R.; Nemoto, T.; Gillenwater, K.A. Cigarette smoking, n acetyltransferase 2 genetic polymorphisms, and breast cancer risk. JAMA 1996, 276, 1494–1501.
Limsui, D.; Vierkant, R.A.; Tillmans, L.S.; Wang, A.H.; Weisenberger, D.J.; Laird, P.W.; Lynch, C.F.; Anderson, K.E.; French, A.J.; Haile, R.W. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J. Natl. Cancer Inst. 2010, 102, 1012–1022.
Collaboration, G.B.o.D.C. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol. 2019, 5, 1749–1768.
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7 30.
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96.
Clark, R.; Lee, S.-H. Anticancer properties of capsaicin against human cancer. Anticancer Res. 2016, 36, 837–843.
Thoreson, M.A.; Reynolds, A.B. Altered expression of the catenin p120 in human cancer: Implications for tumor progression. Differentiation 2002, 70, 583–589.
Wainwright, E.N.; Scaffidi, P. Epigenetics and cancer stem cells: Unleashing, hijacking, and restricting cellular plasticity. Trends Cancer 2017, 3, 372–386.
Silverstein, A.; Silverstein, V.; Nunn, L. Cancer: Conquering a Deadly Disease: Twenty; Twenty-First Century Books: Minneapolis, MN, USA, 2006.
Clark, A.G.; Vignjevic, D.M. Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 2015, 36, 13–22.
Cui, Q.; Ma, Y.; Jaramillo, M.; Bari, H.; Awan, A.; Yang, S.; Zhang, S.; Liu, L.; Lu, M.; O’Connor-McCourt, M. A map of human cancer signaling. Mol. Syst. Biol. 2007, 3, 152.
Kaur, R.; Kapoor, K.; Kaur, H. Plants as a source of anticancer agents. J. Nat. Prod. Plant Resour. 2011,1, 119–124.
Huber, P.E.; Bischof, M.; Jenne, J.; Heiland, S.; Peschke, P.; Saffrich, R.; Gröne, H.-J.; Debus, J.; Lipson, K.E.; Abdollahi, A. Trimodal cancer treatment: Beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res. 2005, 65, 3643–3655.
Katz, S.J.; Lantz, P.M.; Janz, N.K.; Fagerlin, A.; Schwartz, K.; Liu, L.; Deapen, D.; Salem, B.; Lakhani, I.; Morrow, M. Patient involvement in surgery treatment decisions for breast cancer. J. Clin. Oncol. 2005, 23, 5526–5533.
Temple, L.K.; Hsieh, L.; Wong, W.D.; Saltz, L.; Schrag, D. Use of surgery among elderly patients with stage iv colorectal cancer. J. Clin. Oncol. 2004, 22, 3475–3484.
Li, P.; Li, X.; Saravanan, R.; Li, C.M.; Leong, S.S.J. Antimicrobial macromolecules: Synthesis methods and future applications. RSC Adv. 2012, 2, 4031–4044.
Ab Mutalib, N.-S.; Wong, S.H.; Ser, H.-L.; Duangjai, A.; Law, J.W.-F.; Ratnakomala, S.; Tan, L.T.-H.; Letchumanan, V. Bioprospecting of microbes for valuable compounds to mankind. Prog. Micobes Mol. Biol. 2020, 3, a0000088.
Berdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26.
Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS ONE 2017, 12, e0187925.
Martínez-Montiel, N.; Rosas-Murrieta, N.H.; Martínez-Montiel, M.; Gaspariano-Cholula, M.P.; Martínez-Contreras, R.D. Microbial and natural metabolites that inhibit splicing: A powerful alternative for cancer treatment. Biomed Res. Int. 2016, 2016, 3681094.
Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; van Sinderen, D. Genomics of actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007, 71, 495–548.
Castelle, C.J.; Banfield, J.F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 2018, 172, 1181–1197.
Law, J.W.-F.; Pusparajah, P.; Ab Mutalib, N.-S.; Wong, S.H.; Goh, B.-H.; Lee, L.-H. A review on mangrove actinobacterial diversity: The roles of Streptomyces and novel species discovery. Prog. Micobes Mol. Biol. 2019,1, a0000024.
Law, J.W.-F.; Letchumanan, V.; Tan, L.T.-H.; Ser, H.-L.; Goh, B.-H.; Lee, L.-H. The rising of “modern actinobacteria” era. Prog. Micobes Mol. Biol. 2020, 3, a0000064.
Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43.
Salam, N.; Jiao, J.-Y.; Zhang, X.-T.; Li, W.-J. Update on the classification of higher ranks in the phylum actinobacteria. Int. J. Syst. Evol. Microbiol. 2020, 70, 1331–1355.
Dharmaraj, S. Marine streptomyces as a novel source of bioactive substances. World J. Microbiol. Biotechnol. 2010, 26, 2123–2139.
Lee, L.-H.; Zainal, N.; Azman, A.-S.; Eng, S.-K.; Goh, B.-H.; Yin, W.-F.; Ab Mutalib, N.-S.; Chan, K.-G. Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in malaysia. Sci. World J. 2014, 2014, 698178.
. Lee, L.-H.; Zainal, N.; Azman, A.-S.; Eng, S.-K.; Ab Mutalib, N.-S.; Yin, W.-F.; Chan, K.-G. Streptomyces pluripotens sp. Nov., a bacteriocin-producing streptomycete that inhibits meticillin-resistant Staphylococcus aureus. Int. J. Syst. Evol. Microbiol. 2014, 64, 3297–3306.
Tan, L.T.-H.; Chan, K.-G.; Khan, T.M.; Bukhari, S.I.; Saokaew, S.; Duangjai, A.; Pusparajah, P.; Lee, L.-H.; Goh, B.-H. Streptomyces sp. Mum212 as a source of antioxidants with radical scavenging and metal chelating properties. Front. Pharmacol. 2017, 8, 276.
Kemung, H.M.; Hern, T.; Loh, T.; Khan, T.M.; FASc, C.; Gan, K.; Pusparajah, P.; Goh, B.H.; Lee, L.-H. Streptomyces as a prominent resource of future anti-mrsa drugs. Front. Microbiol. 2018, 9, 2221.
Pimentel-Elardo, S.M.; Kozytska, S.; Bugni, T.S.; Ireland, C.M.; Moll, H.; Hentschel, U. Anti-parasitic compounds from Streptomyces sp. Strains isolated from mediterranean sponges. Mar. Drugs 2010, 8, 373–380.
Ser, H.-L.; Law, J.W.-F.; Chaiyakunapruk, N.; Jacob, S.A.; Palanisamy, U.D.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review. Front. Microbiol. 2016, 7, 522.
104. Ryu WS. Virus life cycle. In: Ryu WS, editor. Molecular Virology of Human Pathogenic Viruses. Cambridge, MA: Academic Press (2017). p. 31–45.
105. Seo DJ, Changsun C. Antiviral bioactive compounds of mushrooms and their antiviral mechanisms: a review. Viruses. (2021) 13:350. doi: 10.3390/v13020350
106. Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs. (2012) 10:2795–816. doi: 10.3390/md10122795
71. Zhu W, Chiu LC, Ooi VE, Chan PK, Ang PO Jr. Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1. Phytomedicine. (2006) 13:695–701. doi: 10.1016/j.phymed.2005.11.003
59. Chen MZ, Xie HG, Yang LW, Liao ZH, Yu J. In vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis. Virol Sin. (2010) 25:341–51. doi: 10.1007/s12250-010-3137-x
Karmakar P, Pujol CA, Damonte EB, Ghosh T, Ray B. Polysaccharides from Padina tetrastromatica: structural features, chemical modification and antiviral activity. Carbohydr Polym. (2010) 80:513–20.
Nguyen TL, Chen J, Hu Y, Wang D, Fan Y, Wang J, et al. In vitro antiviral activity of sulfated Auricularia auricula polysaccharides. Carbohydr Polym. (2012) 90:1254–8.
Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydr Res. (2021) 505:108326.
Tian J, Hu X, Liu D, Wu H, Qu L. Identification of Inonotus obliquus polysaccharide with broad-spectrum antiviral activity against multi-feline viruses. Int J Biol Macromol. (2017) 95:160–7.
Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol. (2020) 164:331–43.
Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry. 2020;44(9):e13394.
Amany, M., Abdel-Raheam, H.E. Red and yellow monascus pigments as potential natural antioxidants for fatty foods. Plant Archives. 2020;20(2):444-9.
Demain AL, Fang A. The natural functions of secondary metabolites. Advances in biochemical
engineering/biotechnology 2000;69:1-39
Singh V, Haque S, Singh H, Verma J, Vibha K, Singh R, Jawed A, Tripathi CK. Isolation, Screening, and Identification of Novel Isolates of Actinomycetes from India for Antimicrobial Applications. Frontiers in microbiology 2016;7:1921.
Berdy J. Bioactive microbial metabolites. The Journal ofantibiotics 2005 Jan;58(1):1-26


Download 230.5 Kb.

Share with your friends:
1   2   3   4   5   6   7   8   9   10   11




The database is protected by copyright ©ininet.org 2024
send message

    Main page