Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks



Download 271.51 Kb.
Page6/6
Date17.07.2017
Size271.51 Kb.
#23597
1   2   3   4   5   6

Supporting Information


S1 Table. Main characteristics of a panel of gap-filling methods.

(PDF)


S1 Appendix. Description of the different methods used in the benchmark and a more precised description of the obtained results.

(PDF)


S1 Files. E. coli benchmark of 10,800 non-functional degraded networks and FVA results. All files needed to run gap-filling experiments on the benchmark are provided in an archive as well as a Readme.txt file detailing the commands used to produce the results shown in this study. This archive also contains the global results for FVA and a detailed analysis of the network 256 and the biomass 89 as an example. (ZIP)

S2 Files. E. siliculosusnetworks and essential reactions. The two draft networks used to study potential cross-feeding relations between E. siliculosus and Ca. P. ectocarpi are provided together with the list of seeds and targets used to run the Meneco tool. The exhaustive analysis of essential reactions which allow the production of 83 target metabolites thanks to the combination of E. siliculosus and Ca. P. ectocarpi networks is provided in a separate file. Finally, detailled examples of false positive predicted interactions and their explanation are provided in a separate pdf file. (ZIP)

S3 Files. E. mutabilis networks. Both draft and functional reconstructed metabolic networks for E. mutabilis are provided here. The folder also provides the SBML file describing the repair database (MetaCyc 17.5 modified as described in the Material and Methods) required to run the Meneco tool. Files corresponding to targets and seeds are also provided. The file seed_minimum_medium_Emutabilis.sbml describes light and the 8 mineral nutrients of the minimal growth medium for E. mutabilis. As described in the main text, the network is not functional with only these seeds as reactions in cycles are blocked. The file “seeds_min_Emutabilis_final. sbml” provides the minimal set of seeds necessary to unblock the cycles and produce all the targets in “targets_Emutabilis_72.sbml” while the list of seeds and targets is also provided as tables in the file “seedsAndTargets_euglena.pdf”. (ZIP)

Author Contributions


Conceptualization: SP SMD ST AL GC DE JB FP TT AS.

Data curation: SP CF SMD AL GC FP.

Funding acquisition: AS TT.

Investigation: SP CF SMD AL GC FG JB FP TT AS.

Methodology: SP SMD ST AL GC FG DE JB FP TT AS.

Project administration: SP AS.

Software: SP ST GC AS.

Supervision: SMD DE FP TT AS.

Validation: SP CF SMD ST FG FP TT AS.

Visualization: SP CF SMD GC FG FP TT AS.

Writing – original draft: SP CF SMD ST AL GC FP TT AS.

Writing – review & editing: SP CF SMD ST AL GC FG JG DE JB FP TT AS.

References


  1. Thiele I, Palsson BO. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols. 2010 Jan; 5(1):93–121. Available from: http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=3125167&tool=pmcentrez&rendertype=abstract. doi: 10.1038/nprot.2009.203 PMID: 20057383

  2. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotechnology. 2010 Aug; 28

(9):977–982. Available from: http://www.nature.com/doifinder/10.1038/nbt.1672. doi: 10.1038/nbt.1672 PMID: 20802497

  1. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J. The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum. PLoS Comput Biol. 2013 03; 9(3):e1002980. Available from: http://dx.doi.org/10.1371%2Fjournal.pcbi.1002980. PMID: 23555215

  2. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, et al. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Research. 2013; 41(D1):D636–D647. Available from: http://nar.oxfordjournals.org/content/41/ D1/D636.abstract. doi: 10.1093/nar/gks1194 PMID: 23193269

  3. Karp PD, Paley S, Romero P. The Pathway Tools software. Bioinformatics. 2002 Jul; 18(Suppl 1): S225–S232. Available from: http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/18. suppl_1.S225. doi: 10.1093/bioinformatics/18.suppl_1.S225 PMID: 12169551

  4. Loira N, Zhukova A, Sherman DJ. Pantograph: A template-based method for genome-scale metabolic model reconstruction. Journal of Bioinformatics and Computational Biology. 2015; 13(02):1550006. Available from: http://www.worldscientific.com/doi/abs/10.1142/S0219720015500067. doi: 10.1142/ S0219720015500067 PMID: 25572717

  5. Handorf T, Ebenho¨h O, Heinrich R. Expanding Metabolic Networks: Scopes of Compounds, Robustness, and Evolution. Journal of Molecular Evolution. 2005; 61(4):498–512. Available from: http://dx.doi. org/10.1007/s00239-005-0027-1. PMID: 16155745

  6. Satish Kumar V, Dasika MS, Maranas CD. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics. 2007; 8:212. Available from: http://www.biomedcentral.com/1471-

2105/8/212. doi: 10.1186/1471-2105-8-212 PMID: 17584497

  1. Thiele I, Vlassis N, Fleming RMT. fastGapFill: efficient gap filling in metabolic networks. Bioinformatics (Oxford, England). 2014 Sep; 30(17):2529–2531. Available from: http://dx.doi.org/10.1093/ bioinformatics/btu321. PMID: 24812336

  2. Benedict MN, Mundy MB, Henry CS, Chia N, Price ND. Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models. PLoS Comput Biol. 2014 10; 10

(10):e1003882. Available from: http://dx.doi.org/10.1371%2Fjournal.pcbi.1003882. PMID: 25329157

  1. Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proceedings of the National Academy of Sciences. 2012; 109(1):339–344. Available from: http://www.pnas.org/ content/109/1/339.abstract. doi: 10.1073/pnas.1100358109 PMID: 22184215

  2. Herrgård MJ, Fong SS, Palsson BØ. Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux Profiles. PLoS Comput Biol. 2006 07; 2(7):e72. Available from: http://dx. plos.org/10.1371%2Fjournal.pcbi.0020072. doi: 10.1371/journal.pcbi.0020072 PMID: 16839195

  3. Kumar VS, Maranas CD. GrowMatch: An Automated Method for Reconciling In Silico In Vivo Growth Predictions. PLoS Comput Biol. 2009 03; 5(3):e1000308. Available from: http://dx.doi.org/10.1371/ journal.pcbi.1000308. PMID: 19282964

  4. Vitkin E, Shlomi T. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome biology. 2012; 13(11):R111. Available from: http://dx.doi.org/10.1186/gb-2012-13-11-r111. PMID: 23194418

  5. Christian N, May P, Kempa S, Handorf T, Ebenho¨h O. An integrative approach towards completing genome-scale metabolic networks. Molecular BioSystems. 2009 Dec; 5(12):1889–903. Available from: http://pubs.rsc.org/en/content/articlehtml/2009/mb/b915913b. doi: 10.1039/B915913b PMID: 19763335

  6. Monk J, Nogales J, Palsson BO. Optimizing genome-scale network reconstructions. Nature biotechnology. 2014; 32(5):447–452. Available from: http://dx.doi.org/10.1038/nbt.2870. PMID: 24811519

  7. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic

Acids Research. 2014; 42(D1):D459–D471. Available from: http://nar.oxfordjournals.org/content/42/ D1/D459.abstract. doi: 10.1093/nar/gkt1103 PMID: 24225315

  1. Halter D, Andres J, Plewniak F, Poulain J, Da Silva C, Arsène-Ploetze F, et al. Arsenic hypertolerance in the protist Euglena mutabilis is mediated by specific transporters and functional integrity maintenance mechanisms. Environ Microbiol. 2015 Jun; 17(6):1941–1949. Available from: http://dx.doi.org/10.1111/ 1462-2920.12474. PMID: 24698441

  2. Halter D, Goulhen-Chollet F, Gallien S, Casiot C, Hamelin J, Gilard F, et al. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis. ISME J. 2012 Jul; 6(7):1391–1402. Available from: http://dx.doi.org/10.1038/ismej.2011.198. PMID: 22237547

  3. Dittami SM, Barbeyron T, Boyen C, Cambefort J, Collet G, Delage L, et al. Genome and metabolic network of “Candidatus Phaeomarinobacter ectocarpi” Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae. Frontiers in Genetics. 2014; 5(241). Available from: http:// www.frontiersin.org/systems_biology/10.3389/fgene.2014.00241/abstract. doi: 10.3389/fgene.2014. 00241 PMID: 25120558

  4. Prigent S, Collet G, Dittami SM, Delage L, Ethis de Corny F, Dameron O, et al. The genome-scale metabolic network of Ectocarpus siliculosus (EctoGEM): a resource to study brown algal physiology and beyond. The Plant Journal. 2014; 80(2):367–381. Available from: http://dx.doi.org/10.1111/tpj.12627. PMID: 25065645

  5. Dittami SM, Eveillard D, Tonon T. A metabolic approach to study algal–bacterial interactions in changing environments. Molecular Ecology. 2014; 23(7):1656–1660. Available from: http://dx.doi.org/10. 1111/mec.12670. PMID: 24447216

  6. Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK, Herring CD, et al. Systems approach to refining genome annotation. Proc Natl Acad Sci U S A. 2006 Nov; 103(46):17480–17484. Available from: http:// dx.doi.org/10.1073/pnas.0603364103. PMID: 17088549

  7. Pharkya P, Burgard AP, Maranas CD. OptStrain: A computational framework for redesign of microbial production systems. Genome Research. 2004; 14(11):2367–2376. Available from: http://genome. cshlp.org/content/14/11/2367.abstract. doi: 10.1101/gr.2872004 PMID: 15520298

  8. Romero PR, Karp P. Nutrient-related analysis of pathway/genome databases. Pac Symp Biocomput.

2001;p. 471–482. Available from: http://psb.stanford.edu/psb-online/proceedings/psb01/romero.pdf. doi: 10.1142/9789814447362_0046 PMID: 11262965

  1. Cottret L, Vieira Milreu P, Acuña V, Marchetti-Spaccamela A, Viduani Martinez F, Sagot MF, et al. Enumerating Precursor Sets of Target Metabolites in a Metabolic Network. In: Crandall K, Lagergren J, editors. Algorithms in Bioinformatics. vol. 5251 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2008. p. 233–244. Available from: http://dx.doi.org/10.1007/978-3-540-87361-7_20.

  2. Schaub T, Thiele S. Metabolic Network Expansion with Answer Set Programming. In: International Conference on Logic Programming/Joint International Conference and Symposium on Logic Programming. Springer Berlin Heidelberg; 2009. p. 312–326. Available from: http://dx.doi.org/10.1007/978-3-64202846-5_27.

  3. Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotech. 2010 Mar; 28(3):245–248. Available from: http://dx.doi.org/10.1038/nbt.1614.

  4. Gebser M, Kaminski R, Kaufmann B, Schaub T. Answer set solving in practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. 2012; 6(3):1–238. Available from: http://dx.doi.org/10. 2200/S00457ED1V01Y201211AIM019.

  5. Marashi SA, Tefagh M. A mathematical approach to emergent properties of metabolic networks: partial coupling relations, hyperarcs and flux ratios. Journal of theoretical biology. 2014 Aug; 355:185–193. Available from: http://dx.doi.org/10.1016/j.jtbi.2014.04.011. PMID: 24751930

  6. de Figueiredo LF, Schuster S, Kaleta C, Fell DA. Can sugars be produced from fatty acids? A test case for pathway analysis tools. Bioinformatics. 2009; 25(1):152–158. Available from: http://bioinformatics.

oxfordjournals.org/content/25/1/152.abstract. doi: 10.1093/bioinformatics/btn621 PMID: 19117076

  1. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic

information. Mol Syst Biol. 2007 Jun; 3. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC1911197/. doi: 10.1038/msb4100155 PMID: 17593909

  1. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011. Mol Syst Biol. 2011 Oct; 7:535. Available from: http:// www.ncbi.nlm.nih.gov/pmc/articles/PMC3261703/. doi: 10.1038/msb.2011.65 PMID: 21988831

  2. Cock JM, Coelho SM, Brownlee C, Taylor AR. The Ectocarpus genome sequence: insights into brown algal biology and the evolutionary diversity of the eukaryotes. New Phytologist. 2010; 188(1):1–4. Available from: http://dx.doi.org/10.1111/j.1469-8137.2010.03454.x. PMID: 20840144

  3. Ye N, Zhang X, Miao M, Fan X, Zheng Y, Xu D, et al. Saccharina genomes provide novel insight into kelp biology. Nature communications. 2015; 6:6986. Available from: http://europepmc.org/articles/ PMC4421812. doi: 10.1038/ncomms7986 PMID: 25908475

  4. Halter D, Casiot C, Heipieper HJ, Plewniak F, Marchal M, Simon S, et al. Surface properties and intracellular speciation revealed an original adaptive mechanism to arsenic in the acid mine drainage bioindicator Euglena mutabilis. Applied Microbiology and Biotechnology. 2012; 93(4):1735–1744. Available from: http://dx.doi.org/10.1007/s00253-011-3493-y. PMID: 21792588

  5. Cottret L, Milreu PV, Acuña V, Marchetti-Spaccamela A, Stougie L, Charles H, et al. Graph-Based Analysis of the Metabolic Exchanges between Two Co-Resident Intracellular Symbionts, Baumannia cicadellinicola and Sulcia muelleri, with Their Insect Host, Homalodisca coagulata. PLOS Computational

Biology. 2010 09; 6(9):1–13. Available from: http://dx.doi.org/10.1371%2Fjournal.pcbi.1000904. PMID: 20838465

  1. Loira N, Zhukova A, Sherman DJ. Pantograph: A template-based method for genome-scale metabolic model reconstruction. Journal of Bioinformatics and Computational Biology. 2015; 13(02):1550006. Available from: http://www.worldscientific.com/doi/abs/10.1142/S0219720015500067. PMID: 25572717

  2. Gebser M, Kaufmann B, Schaub T. Conflict-driven answer set solving: From theory to practice. Artificial Intelligence. 2012; 187:52–89. Available from: http://www.sciencedirect.com/science/article/pii/ S0004370212000409. doi: 10.1016/j.artint.2012.04.001

  3. Gebser M, Kaminski R, Kaufmann B, Ostrowski M, Schaub T, Thiele S. Engineering an Incremental ASP Solver. In: de la Banda MG, Pontelli E, editors. Proceedings of the Twenty-fourth International Conference on Logic Programming (ICLP’08). vol. 5366 of Lecture Notes in Computer Science. Springer; 2008. p. 190–205. Available from: http://dx.doi.org/10.1007/978-3-540-89982-2_23.

  4. Collet G, Eveillard D, Gebser M, Prigent S, Schaub T, Siegel A, et al. Extending the Metabolic Network of Ectocarpus Siliculosus Using Answer Set Programming. In: Cabalar P, Son TC, editors. Proceedings of the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning. vol. 8148 of Lecture Notes in Computer Science. Springer; 2013. p. 245–256. Available from: http://dx.doi. org/10.1007/978-3-642-40564-8_25.

  5. Czyzyk J, Mesnier MP, More JJ. The NEOS Server. Computational Science Engineering, IEEE. 1998 Jul; 5(3):68–75. Available from: http://dx.doi.org/10.1109/99.714603.

  6. Steffensen JL, Dufault-Thompson K, Zhang Y. PSAMM: A Portable System for the Analysis of Metabolic Models. PLoS Comput Biol. 2016 02; 12(2):1–29. Available from: http://dx.doi.org/10.1371% 2Fjournal.pcbi.1004732. PMID: 26828591

  7. Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 2003; 4(9):R54. Available from: http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC193654/. doi: 10.1186/gb-2003-4-9-r54 PMID: 12952533

  8. Kenneth H. The TOMLAB Optimization Environment in Matlab. Advanced Modeling and Optimization. 1999; 1(1):47–69. Available from: http://tomopt.com/docs/Tomlab-v1.0-Advanced-Modeling-andOptimization-1999-vol-1-num-1.pdf.

  9. Sterck L, Billiau K, Abeel T, Rouze´ P, Van de Peer Y. ORCAE: online resource for community annotation of eukaryotes. Nature methods. 2012 Nov; 9(11):1041. Available from: http://dx.doi.org/10.1038/ nmeth.2242. PMID: 23132114

  10. Ebrahim A, Lerman J, Palsson B, Hyduke D. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Systems Biology. 2013; 7(1):74. Available from: http://www.biomedcentral.com/ 1752-0509/7/74. PMID: 23927696

  11. Fo¨rster J, Famili I, Fu P, Palsson BO, Nielsen J. Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network. Genome Research. 2003; 13(2):244–253. Available from: http:// genome.cshlp.org/content/13/2/244.abstract. doi: 10.1101/gr.234503 PMID: 12566402

  12. Buetow D, Levedahl B. Decline in the cellular content of RNA, protein and dry during the logarithmic growth of Euglena gracilis. Microbiology. 1962; 28(4):579–584. Available from: http://mic. microbiologyresearch.org/content/journal/micro/10.1099/00221287-28-4-579. PMID: 13874466

  13. Kott Y, Wachs AM. Amino acid composition of bulk protein of Euglena grown un water. Applied Microbiology. 1964 Jul; 12(4):292–294. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC1058119/. PMID: 14199015

  14. Constantopoulos G, Bloch K. Effect of Light Intensity on the Lipid Composition of Euglena gracilis. Journal of Biological Chemistry. 1967; 242(15):3538–3542. Available from: http://www.jbc.org/content/242/ 15/3538.abstract.

  15. Constantopoulos G. Lipid metabolism of manganese-deficient algae. I. Effect of manganese deficiency on the greening and the lipid composition of Euglena gracilis Z. Plant Physiology. 1970 Jan; 45(1):76– 80. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC396358/. doi: 10.1104/pp.45.1.76 PMID: 5436328

  16. Terry OW, Edmunds LN. Phasing of cell division by temperature cycles in Euglena cultured autotrophically under continuous illumination. Planta. 1970; 93(2):106–127. Available from: http://dx.doi.org/10. 1007/BF00387119. PMID: 24496707

  17. Regnault A, Chervin D, Chammai A, Piton F, Calvayrac R, Mazliak P. Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance. Phytochemistry. 1995; 40(3):725–733. Available from: http:// www.sciencedirect.com/science/article/pii/003194229500268C. doi: 10.1016/0031-9422(95)00268-C

  18. Lunau M, Lemke A, Walther K, Martens-Habbena W, Simon M. An improved for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environmental Microbiology. 2005; 7(7):961–968. Available from: http://dx.doi.org/10.1111/j.1462-2920.2005.00767.x. PMID: 15946292



Download 271.51 Kb.

Share with your friends:
1   2   3   4   5   6




The database is protected by copyright ©ininet.org 2024
send message

    Main page