Nanocomputers-Theoretical Models



Download 0.53 Mb.
Page10/10
Date03.06.2017
Size0.53 Mb.
#19961
1   2   3   4   5   6   7   8   9   10

References


1 Seth Lloyd pointed out this analogy to me in personal discussions.

1 John E. Savage, Models of Computation: Exploring the Power of Computing, Addison-Wesley (1998)

2 Charles H. Bennett, International Journal of Theoretical Physics, 21, 12, pp. 905-940 (1982)

3 Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000)

4 Michael P. Frank, Reversibility for Efficient Computing, manuscript based on Ph.D. thesis, MIT (1999)

5 Michael P. Frank, “Nanocomputer Systems Engineering,” Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show (2003)

6 Semiconductor Industry Association, International Technology Roadmap for Semiconductors, 2002 Update (2002)

7 Brian Doyle et al., Intel Technology Journal, 6, 2, pp. 42-54, May 16 (2002)

8 B. Doris et al., “Extreme Scaling with Ultra-Thin Silicon Channel MOSFET’s (XFET),” 2002 IEEE International Electron Devices Meeting, San Francisco, Dec. 9-11 (2002)

9 B. Yu et al., “FinFET Scaling to 10nm Gate Length,” 2002 IEEE International Electron Devices Meeting, San Francisco, Dec. 9-11 (2002)

10 V. Derycke et al., Nano Letters, 1, 9, pp. 453-456 (2001)

11 Yu Huang et al., Science, 294, pp. 1313-1317, Nov. 9 (2001)

12 F. Preparata and G. Bilardi, 25th Anniversary of INRIA 1992, pp. 155-174 (1992)

13 Brian Greene, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, Norton, Feb. (1999)

14 Lee Smolin, Three Roads to Quantum Gravity, Basic Books (2002). For a more recent and more technical introduction, also see Smolin, “Quantum gravity with a positive cosmological constant,” ArXiv.org preprint hep-th/0209079 (2002)

15 W. Smith, “Fundamental physical limits on computation,” NECI Technical Report, May (1995)

16 S. Lloyd, Nature, 406, pp. 1047-1054, (2000).

17 P. Vitányi, SIAM J. Computing, 17, pp. 659-672 (1988)

18 N. Margolus and L. Levitin, Physica D, 120, pp. 188-195 (1998)

19 R. Landauer, IBM J. of Research and Development, 5, pp. 183-191 (1961)

20 M. Frank and T. Knight, Nanotechnology, 9, 3, pp. 162-176 (1998).

21 M. Frank, “Realistic Cost-Efficiency Advantages for Reversible Computing in Coming Decades,” UF Reversible Computing Project Memo #M16, http://www.cise.ufl.edu/research/revcomp/memos/Memo16-three-d.doc, Oct. (2002).

22 M. Frank, “The Adiabatic Principle: A Generalized Derivation,” UF Reversible Computing Project Memo #M14, http://www.cise.ufl.edu/research/revcomp/memos/M14_adiaprinc.ps, Aug. (2001)

23 F. Thomson Leighton, Introduction to Parallel Algorithms and Architectures: Arrays ∙ Trees ∙ Hypercubes, Morgan Kaufmann (1992)

24 Werner Heisenberg, The Physical Principles of the Quantum Theory, Dover (1949)

25 Ludwig Boltzmann, Wiener Berichte, 2, 76, pp. 373-435 (1877)

26 Julian Barbour, The End of Time: The Next Revolution in Physics, Oxford University Press (1999)

27 Seth Lloyd, Physical Review Letters, 88, 23, p. 237901, 10 June (2002)

28 Michael P. Frank, “Physics as Computation,” UF Reversible Computing Project Memo #M17, http://www.cise.ufl.edu/research/revcomp/memos/Memo17-PhysComp.doc, Nov. (2002).

29 Christos H. Papadimitriou, Computational Complexity, Addison-Wesley (1994)

30 Charles Leiserson, Area-Efficient VLSI Computation, MIT Press (1983)

31 J. C. Shepherdson and H. E. Sturgis, Journal of the ACM, 10, 2, pp. 217-255 (1963)

32 David Deutsch, Proceedings of the Royal Society of London A, 425, p. 73 (1989)

33 Alan M. Turing, Proceedings of the London Mathematical Society, Series 2, 42, pp. 230-265; 43, pp. 544-546 (1936-1937)

34 P. van Emde Boas, in J. van Leeuwen, ed., Handbook of Theoretical Computer Science, A, pp. 1-66, Elsevier, Amsterdam (1990)

35 John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 3rd Edition, Morgan Kaufmann (2002)

36 John von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press (1966) [This is a posthumous collection of earlier work.]

37 J. E. Avron and A. Elgart, Commun. Math. Phys., 203, pp. 445-463 (1999)

38 Ralph C. Merkle and K. Eric Drexler, Nanotechnology, 7, 4, pp. 325-339 (1996)

39 C. S. Lent and P. D. Tougaw, Proceedings of the IEEE, 85, p. 541 (1997)

40 Saed G. Younis and Thomas F. Knight, Jr., International Workshop on Low Power Design, pp. 177-182 (1994)

41 K. Eric Drexler, Nanosystems, Wiley (1992)

42 K. K. Likharev, International Journal of Theoretical Physics, 21, 3/4, pp. 311-326 (1982)

43 Ralph C. Merkle, Nanotechnology, 4, pp. 114-131 (1993)

44 J. Storrs Hall, “An Electroid Switching Model for Reversible Computer Architectures,” in PhysComp ‘92: Proceedings of the Workshop on Physics and Computation, October 2-4, 1992, Dallas, Texas. IEEE Computer Society Press (1992). Also in Proceedings ICCI ’92, 4th International Conference on Computing and Information (1992)

45 K. Eric Drexler, in F. L. Carter et al., Molecular Electronic Devices, Elsevier, pp. 39-56 (1988)

46 E. F. Fredkin and T. Toffoli, International Journal of Theoretical Physics, 21, 3/4, pp. 219-253 (1982)

47 Richard Feynman, Optics News, 11 (1985) Also in Foundations of Physics, 16, 6, pp. 507-531 (1986)

48 Norman H. Margolus, “Parallel Quantum Computation,” in Complexity, Entropy, and the Physics of Information, Wojciech Zurek, ed. (1990)

49 H. S. Leff and A. F. Rex, eds., Maxwell’s Demon: Entropy, Information, Computing, American International Distribution Corp., Oct. (1990)

50 C. H. Bennett, IBM Journal of Research and Development, 17, 6, pp. 525-532 (1973)

51 Yves Lecerf, Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences, 257, pp. 2597-2600, Oct. 28 (1963)

52 Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp, in Proceedings of the 12th Annual IEEE Conference on Computational Complexity (CCC ’97), pp. 45-50, June (1997)

53 Michael Sipser, Theoretical Computer Science, 10, pp. 335-338 (1980)

54 C. H. Bennett, SIAM Journal on Computing, 18, 4, pp. 766-776 (1989)

55 Ryan Williams, “Space-Efficient Reversible Simulations,” CMU, http://www.cs.cmu.edu/~ryanw/spacesim9_22.pdf, Sep. 22 (2000)

56 Harry Buhrman, John Tromp, and Paul Vitányi, “Time and Space Bounds for Reversible Simulation,” in Proceedings of the International Conference on Automata, Languages, and Programming (2001)

57 Michael P. Frank and M. Josephine Ammer, “Relativized Separation of Reversible and Irreversible Space-Time Complexity Classes,” UF Reversible Computing Project Memo #M6, http://www.cise.ufl.edu/~mpf/rc/memos/M06_oracle.html, (1997)

58 Michael P. Frank, “Cost-Efficiency of Adiabatic Computing with Leakage and Algorithmic Overheads,” UF Reversible Computing Project Memo #M15, http://www.cise.ufl.edu/research/revcomp/memos/Memo15-newalg.ps (2002)

59 Michael P. Frank et al., in Calude, Casti, Dineen, eds., Unconventional Models of Computation, Springer (1998), pp. 183-200.

60 Carlin J. Vieri, Reversible Computer Engineering and Architecture, Ph.D. thesis, MIT (1999)

61 Peter W. Shor, “Algorithms for quantum computation: Discrete log and factoring,” in Proc. 35th Annual Symposium on Foundations of Computer Science, pp. 124-134. IEEE Computer Society Press, Nov. (1994)

62 Seth Lloyd, Science, 273, p. 1073 (1996)

63 R. L. Rivest, A. Shamir, L. A. Adleman, Communications of the ACM, 21, 2, pp. 120-126 (1978)

64 Richard Feynman, International Journal of Theoretical Physics, 21, 6&7, pp. 467-488 (1982)

65 Lov Grover, in Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC), pp. 212-219, May (1996)

66 Vittorio Giovanetti et al., “Quantum limits to dynamical evolution,” ArXiv.org preprint quant-ph/0210197, Oct. (2002)

67 C. H. Bennett et al., SIAM Journal on Computing, 26, 5, pp. 1510-1523 (1997)

68 Ethan Bernstein and Umesh V. Vazirani, in 25th ACM Symposium on the Theory of Computing, pp. 11-20 (1993)

69 Andrew M. Steane, “Overhead and noise threshold of fault-tolerant quantum error correction,” ArXiv.org preprint quant-ph/0207119, July 19 (2002)

70 David Cory et al., Proceedings of the National Academy of Sciences, 94, 5, p. 1634 (1997)

71 Mark Friesen et al., “Practical design and simulation of silicon-based quantum dot qubits,” ArXiv.org preprint cond-mat/0208021, Aug. (2002)

72 J. E. Mooij et al., Science, 285, pp. 1036-1039, Aug. 13 (1999)

73 J. I. Cirac and P. Zoller, Physical Review Letters, 74, 20, pp. 4091-4094, May 15 (1995)

74 Adriano Barenco et al., Physical Review A, 52, pp. 3457-3467 (1995)

75 P. Zanardi and M. Rasetti, Physical Review Letters, 79, 17, pp. 3306-3309 (1998)

76 Wojciech H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” ArXiv.org preprint quant-ph/0105127, July (2002)

77 Michael P. Frank, “Scaling of Energy Efficiency with Decoherence Rate in Closed, Self-Timed Reversible Computing,” UF Reversible Computing Project Memo #M18, http://www.cise.ufl.edu/research/revcomp/memos/Memo18-Timing.doc (2002).

78 Andrew Ressler, “The design of a conservative logic computer and a graphical editor simulator,” MIT Master’s thesis (1981)

79 J. Storrs Hall, in PhysComp ’94: Proceedings of the Workshop on Physics and Computation, November 17-20, 1994, Dallas, Texas, IEEE Computer Society Press, pp. 128-134 (1994)

80 Seth Goldstein and Mihai Budiu, “NanoFabrics: Spatial Computing Using Molecular Electronics,” 28th Annual International Symposium on Computer Architecture (ISCA’01), June (2001)

81 Lisa Durbeck and Nicholas Macias, Nanotechnology, 12, pp. 217-230 (2001)

82 Michael P. Frank, “Computer Architecture Principles,” course lecture slides, http://www.cise.ufl.edu/class/cda5155fa02/, Fall (2002).

83 D. B. Skillicorn, “Parallelism and the Bird-Meertens Formalism,” Dept. of Computing and Information Science, Queen’s University, Kingston, Canada, http://citeseer.nj.nec.com/skillicorn92parallelism.html, April 24 (1992)

84 Christopher Lutz and Howard Derby, “Janus: A time-reversible language,” CalTech class project, http://www.cise.ufl.edu/~mpf/rc/janus.html, (1982)

85 Henry Baker, “NREVERSAL of Fortune—the Thermodynamics of Garbage Collection,” Proceedings of the International Workshop on Memory Management, St. Malo, France, Sep. 1992. Also in Lecture Notes in Computer Science, 637, Springer (1992)

86 S. Bettelli et al., “Toward an architecture for quantum programming,” IRST technical report 0103-010, Nov. 23 (2001)

87 Bernhard Ömer, “A Procedural Formalism for Quantum Computing,” Masters thesis, Dept. of Theoretical Physics, Technical University of Vienna, July (1998)

88 B. Ömer, “QCL – A Programming Language for Quantum Computers,” Masters thesis, Institute of Information Systems, Technical University of Vienna, January (2000)

89 J. W. Sanders and P. Zuliani, “Quantum Programming,” TR-5-99, Programming Research Group, OUCL, Oxford, Nov. (1999)

90 Peter Selinger, “Towards a Quantum Programming Language,” Dept. of Mathematics, University of Ottawa (2002)

91 Greg Baker, “ ‘Qgol’: A system for simulating quantum computations: Theory, Implementation and Insights,” Honors thesis, Macquarie University, Oct. (1996)

92 R. L. Wigington, Proceedings of the IRE, 47, pp. 516-523, April (1961)

93 P. Shor, Physical Review A, 52, p. 2493 (1995)

94 Jan M. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice-Hall (1995)

95 Robert Chau, “30nm and 20nm Physical Gate Length CMOS Transistors,” Silicon Nanoelectronics Workshop (2001)

96 B. Doris et al., “Extreme Scaling with Ultra-thin Silicon Channel MOSFET’s (XFET),” 2003 International Electron Devices Meeting (IEDM), San Francisco, Dec. 9-11 (2002)

97 Y. Huang, et al., Science, 294, 9 Nov. (2001)

98 V. Derycke et al., Nano Letters, 1, 9, Sep. (2001); A. Bachtold et al., Science, 294, 9 Nov. (2001)

99 T. Yamada, “Doping Scheme of Semiconducting Atomic Chain,” Fifth Foresight Conference on Molecular Nanotechnology, Palo Alto, CA, Nov. 5-8, (1997)

100 R. Eisberg & R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd ed., Wiley (1985)

101 D. Frank, IBM J. Res. & Dev., 46, 2/3, pp. 235-244, March/May (2002)

102 Sankar Das Sarma, American Scientist, Nov.-Dec. (2001)

103 David Goldhaber-Gordon et al., “Overview of Nanoelectronic Devices,” Proceedings of the IEEE, April (1997)

104 Jiwoong Park et al., Nature, 417, p. 6890 (2002)

105 G. L. Snider et al., Journal of Applied Physics, 85, 8, pp. 4283-4285, Apr. (1999)

106 C. P. Collier et al., Science, 285, pp. 391-394, Jul. 16 (1999)

107 K. K. Likharev, “Rapid Single-Flux-Quantum Logic,” Dept. of Physics, State University of New York, http://pavel.physics.sunysb.edu/RSFQ/Research/WhatIs/rsfqre2m.html (1992)

108 Theodore van Duzer and Charles W. Turner, Principles of Superconductive Devices and Circuits, 2nd ed., Prentice Hall (1999)

109 Z. K. Tang et al., Science, 292, pp. 2462-2465, Jun. 29 (2001)

110 S. Datta and B. Das, Applied Physics Letters, 56, p. 665 (1990)

111 M. Johnson, IEEE Spectrum, 31, 47 (1994)

112 Milena D’Angelo et al., Physical Review Letters, 87, 1, June 14 (2001)

113 Guang He and Song Liu, Physics of Nonlinear Optics, World Scientific, Jan. (2000)

114 M. Frank, Computing in Science & Engineering, 4, 3, pp. 16-25, May/June (2002)

115 M. Frank, “Cyclic Mixture Mutagenesis for DNA-Based Computing,” Ph.D. thesis proposal, MIT, http://www.cise.ufl.edu/~mpf/DNAprop/phd-proposal.html (1995)

116 Thomas F. Knight, Jr., and Gerald Jay Sussman, “Cellular Gate Technology,” MIT AI Lab, July, http://www.ai.mit.edu/people/tk/ce/cellgates.ps (1997).

117 Ray Kurzweil, The Age of Spiritual Machines: When Computers Exceed Human Intelligence, Penguin Books, Jan. (2000)

118 Stephen W. Hawking, Commun. Math. Phys., 43, pp. 199-220 (1975)

119 Jacob D. Bekenstein and Avraham Mayo, Gen. Rel. Grav., 33, pp. 2095-2099 (2001)

120 Freeman J. Dyson, Rev. Modern Physics, 51, 3, pp. 447-460, July (1979)

121 L. M. Krauss and G. D. Starkman, Astrophysical J., 531, 1, pp. 22-30 (2000)


Download 0.53 Mb.

Share with your friends:
1   2   3   4   5   6   7   8   9   10




The database is protected by copyright ©ininet.org 2024
send message

    Main page