Noaa long-term Research Initiative Attacking the Hurricane Intensity and Inland Flood Forecast Problem



Download 194.99 Kb.
Page2/3
Date18.10.2016
Size194.99 Kb.
#1107
1   2   3
13, 1005-1015.

Aberson, S. D., 2003: A note on the predictability of tropical cyclone tracks in the North Western Pacific Basin. Mon. Wea. Rev., in press.

Andreas, E. L., and K. A. Emanuel, 1999: Effects of sea spray on tropical cyclone intensity. Preprints 23rd Conference on Hurricanes and Tropical Meteorology, Dallas, TX, AMS, 22-25.

Andreas, E. L., and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 3741–3751.

Bao, J.-W., J. M. Wilczak, J.-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air-sea interaction under high-wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 2190-2210.

Bender, M. A., and I. Ginis, 2000: Real-case simulation of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, pp. 917-946.

Bennett, A. F., B. S. Chua, and L. M. Leslie, 1996: Generalised inversion of a global numerical weather prediction model. Meteor. Atmos. Phys., 60, 165-178.

Black, M. L., R. W. Burpee, and F. D. Marks, 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 1887-1909.

Black, R. A., H. B. Bluestein, and M. L. Black, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122, 2722-2739.

Black, R. A., R. F. Rogers, P. Willis, and D.-L. Zhang, 2002: The performance of microphysical parameterization schemes in hurricane environments. CAMEX-4 Science Team Workshop, Huntsville, AL, 20-22 November 2002.

Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 1573-1592.

Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulation of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941-3961.

Bosart, L. F., C. S. Velden, W. E. Bracken, J. Molinari, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322-352.

Bowyer, P. J., 2000: Phenomenal waves with a transitioning tropical cyclone (Luis, the Queen, and the buoys). Preprints of the 24th Conference on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, AMS, 294-295.

Chen, Y. and M.-K. Yau, 2001: Spiral Bands in a Simulated Hurricane. Part I: Vortex Rossby Wave Verification. ./. Atmos. Sci., 58, 2128–2145.

Chen, S. S., R. C. Foster, J. Tenerelli, and T. W. Liu, 2002a: Improving hurricane prediction using the QuikSCAT surface winds in model initialization. Geophys. Res. Lett., submitted.

Chen, S. S., W. Zhao, J. E. Tenerelli, and M. A. Donelan, 2002b: Atmosphere-wave-ocean coupling in tropical cyclones. Preprints, 25th Conference on Hurricanes and Tropical Meteorolog, San Diego, CA, AMS, 599-600.

D’Asaro, E. A., 2003: The ocean boundary layer underneath Hurricane Dennis. J. Phys. Oceanogr., (in press).

Davis C., and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 1859-1881.

Davis C., and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 1100-1124.

DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088.

DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern Pacific basins. Wea. Forecast., 14, 326-337.

DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic Basin. Wea. Forecast., 9, 209–220.

DeMaria, M., and R. W. Jones, 1993: Optimization of a hurricane track forecast model with the adjoint model equations. Mon. Wea. Rev., 121,1730-1745.

Dunion, J. P, and C. S. Velden, 2003: The impact of the Saharan Air Layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., (Submitted).

Elsberry, R., 2002: Numerical modeling for tropical cyclone intensity and precipitation – A workshop report, 57 pp. (available from the author).

Elsberry, R., 2001: U. S. Weather Research Program Hurricane Landfall Implementation Plan, available from http://www.mmm.ucar.edu/uswrp/, 54 pp.

Elsberry, R., and F. Marks, 1999: U. S. Weather Research Program Hurricane Landfall Workshop Report, Bull. Amer. Meteor. Soc., 80, 683-685.

Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121-142.

Frank, W. M., 1984: A composite analysis of the core of a mature hurricane. Mon. Wea. Rev., 112, 2401-2420.

Frank, W. M., and E. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249-2269.

Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks, 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121, 2433-2451.

Gallina G. M., and C. S. Velden, 2002: Environmental wind shear and tropical cyclone intensity change using enhanced satellite derived wind information. Preprints, 25th Conference Hurricanes and Tropical Meteorology, San Diego, CA, AMS, 172-173.

Gamache, J. F., R. A. Houze, and F. D. Marks, 1993: Dual-aircraft investigation of the inner core of Hurricane Norbert: Part III: Water budget. J. Atmos. Sci., 50, 3221-3243.

Hanley, D., J. Molinari, and D. Keyser, 2001: A Composite Study of the Interactions between Tropical Cyclones and Upper-Tropospheric Troughs. Mon. Wea. Rev., 129, 2570–2584.

Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Met., 40, 1310–1330.

Hock, T. J., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407-420.

Holland, G. J., 1980: An analytic model of the wind and pressure profile in hurricanes. Mon. Wea. Rev., 108, 1212-1218.

Houze, R. A., F. D. Marks, and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49, 943-962.

Jacob, D. S., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The three-dimensional mixed layer heat balance during hurricane Gilbert. J. Phys. Oceanogr., 30, 1407-1429.

Jacob, S. D., and L. K. Shay, 2003: The role of oceanic mesoscale features on the tropical cyclone-induced response. J. Phys. Oceanogr. (In Press)

Jacob, S. D., L. K. Shay, and G. Halliwell, 2002: Effects of entrainment closure on the oceanic mixed layer response during a tropical cyclone passage: A numerical investigation. Preprints, 25th Conference on Hurricanes and Tropical Meteorology, Boston, MA, AMS, 660-661.

Jones, R. W., and M. DeMaria, 1999: Further studies of the optimization of a hurricane track prediction model using the adjoint equations. Mon. Wea. Rev., 127, 1586-1598.

Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791-2801.

Lee, J.-L., and A. E. MacDonald, 2000: QNH: Mesoscale bounded derivative initialization and winter storm test over complex terrain. Mon. Wea. Rev., 128, 1037-1051.

Lee, J.-L., Y.-H. Kuo, and A. E. MacDonald, 2003: Vorticity method: Extension to mesoscale vertical velocity and validation for tropical storms. Quart. J. Roy. Met. Soc., in press.

Leslie, L. M., R. F. Abbey Jr., and G. J. Holland, 1998a: Tropical cyclone track predictability. Meteorol. Atmos. Phys., 65, 223-231.

Leslie, L. M., J. F. LeMarshall, R. P. Morison, C. Spinoso, R. J. Purser, N. Pescod, R. Seecamp, 1998b: Improved Hurricane Track Forecasting from the Continuous Assimilation of High Quality Satellite Wind Data. Mon. Wea. Rev., 126, 1248–1258.

LeMarshall, J. F., and L. M. Leslie, 1998: Tropical cyclone track prediction using very high resolution satellite data. Aust. Meteor. Mag., 47, 261-266

Liu, Y., D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073-3093.

Liu, Y., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597-2616.

Mainelli, M. M., M. DeMaria, and L. K. Shay, 2002: The impact of oceanic heat content on hurricane intensity forecasts using the SHIPS model. Preprints of 25th Conference on Hurricanes and Tropical Meteorology, San Diego, CA, AMS, 627-628.

Marks, F. D., 2003: State of the Science: Radar View of Tropical Cyclones. Chapter 2 in Radar and Atmospheric Science: A collection of essays in honor of David Atlas, Amer. Meteor. Soc., Boston, MA, 500 p.

Marks, F. D., R. A. Houze, and J. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert: Part 1: Kinematic structure. J. Atmos. Sci., 49, 919-942.

McFarquhar, G. M., and R. A. Black, 2002: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. accepted in J. Atmos. Sci.

Montgomery, M. T, and R. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435-465.

Nuissier, O., and F. Roux, 2002: Numerical simulations of tropical cyclones. Part I: An idealized control experiment. Submitted to Quart. J Roy. Meteor. Soc.

Nuissier, O., R. F. Rogers, and F. Roux, 2002: Numerical simulations of tropical cyclones. Part II: Hurricane Bret on 22-23 August 1999. Submitted to Quart. J. Roy. Meteor. Soc.

Orndorff, C. M., S. S. Chen, and J. E. Tenerelli, 2002: Precipitation and landmass interaction during Hurricane Georges (1998) landfall at Puerto Rico. Preprints, 25th Conference on Hurricanes and Tropical Meteorology, 28 April–3 May 2002, San Diego, California, Amer. Meteor. Soc., 297-298.

Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279-304.

Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. submitted to J. Atmos. Sci.

Pielke, R., and C. Landsea, 1998: Normalized hurricane damages in the United States: 1925–95. Wea. Forecasting, 13, 621–631.

Powell, M., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, (in press).

Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 126, 649-668.

Rogers, R. F., R. A. Black, and D.-L. Zhang, 2002a: A preliminary investigation of a common microphysical parameterization and its applicability to tropical cyclone simulations. Preprints, 25th Conference on Hurricanes and Tropical Meteorology, AMS, San Diego, CA, 436-437.

Rogers, R., S. S. Chen, J. E. Tenerelli, and H. E. Willoughby, 2002b: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998), Mon. Wea. Rev., in press.

Roux, F., and F. D. Marks, 1996: Extended velocity track display (EVTD): An improved processing method for Doppler radar observations of tropical cyclones. J. Atmos. Oceanic Technol., 13, 875-899.

Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197-1223.

Schubert, W. H., S. A. Hausman, M. Garcia, K. V. Ooyama, H.-C. Kuo, 2001: Potential vorticity in a moist atmosphere. J. Atmos. Sci., 58, 3148–3157.

Shay, L. K., A. J. Mariano, S. D. Jacob, and E. H. Ryan, 1998: Mean and near-inertial ocean current response to hurricane Gilbert. J. Phys. Oceanogr., 28, 858 - 889.

Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm ocean feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366-1383.

Shen, W., and I. Ginis, 2001: The impact of ocean coupling on hurricanes during landfall. Geophys. Res. Letters, 28, 2839-2842.

Shen, W., R. E. Tuleya , S. Lord, N. Surgi, K. E. Mitchell, 2002: Implementation of a coupled hurricane-land surface prediction system for improving hurricane prediction during landfall. Preprints, 25th Conference on Hurricanes and Tropical Meteorology, AMS, San Diego, CA, 666.

Soden B. J., C. S. Velden, and R. E. Tuleya, 2001: The impact of satellite winds on experimental GFDL hurricane model forecasts. Mon. Wea. Rev., 129, 835-852.

Surgi, N., and J. Evans, 2003: Hurricane Weather and Research Forecast (WRF) Model Workshop Report, Arlington, Virginia, 29-30 May 2002, available from http://www.mmm.ucar.edu/uswrp/, 31 pp.

Surgi, N., H. L. Pan, and S. J. Lord, 1998: Improvement of the NCEP Global Model over the Tropics: An evaluation of model performance during the 1995 hurricane season. Mon. Wea. Rev., 126, 1287-1305.

Tenerelli, J. E., and S. S. Chen, 2001: High-resolution simulation of Hurricane Floyd (1999) using MM5 with a vortex-following mesh refinement. Preprints, 18th Conference on Weather Analysis and Forecasting/14th Conference on Numerical Weather Prediction, Ft. Lauderdale, FL, AMSJ54-J56.

Tenerelli, J. E., and S. S. Chen, 2002: Intensity change and eyewall replacement in Hurricane Floyd (1999). Preprints, 25th Conference on Hurricanes and Tropical Meteorology, San Diego, CA, AMS, 168-169.

Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, 782-797.

Tolman, H. L., 1999: User manual and system documentation of WAVEWATCH-III version 1.18. NOAA/NWS/NCEP/OMB Technical Note 166, 110 pp.

Toth, Z., and S. Vannitsem, 2002: Model errors and ensemble forecasting. Proceedings, 8th ECMWF Workshop on Meteorological Operational Systems, Reading, England, 146-154.

Tristram, C., 2003: Supercomputing Resurrected. Technology Review, 106, 52-60.

Uhlhorn, E. W., and P. G. Black, 2002: Verification of remotely sensed sea surface winds in hurricanes, J. Atmos. Ocean. Tech, (in press).

Wang, Y., J. D. Kepert, and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary-layer structure and intensity. Mon. Wea. Rev., 129, 2481-2500.

White, S. R., M. M. Mainelli, S. D. Jacob, and L. K. Shay, 2002: Hurricane heat potential estimates from monthly versus seasonal temperature and salinity data. Preprints of the 25th Conference on Hurricanes and Tropical Meteorology, San Diego, CA, AMS, 128-129.

Wright, C. W., E. J. Walsh, D. Vandemark, W. B. Krabill, A. W. Garcia, S. Houston, M. Powell, P. Black, and F. D. Marks, 2001: Hurricane directional wave spectrum spatial variations in the open ocean. J. Phys. Oceanogr., 31, 2472-2488.

Zhang, D.-L., Y. Liu, M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 2745–2763.

Zhu, Y., Z. Toth, R. Wobus, D. Richardson, and K. Mylne, 2002: The economic value of ensemble based weather forecasts. Bull. Amer. Meteor. Soc., 83, 73-83.


C. Proposal Budget
1. Cumulative budget
$7.56M/year, where $3.86M/year is for additional manpower beyond base, $2.4M/year for costs of acquiring new observations and field experiments, $0.3M/year for travel, and an estimate of $1.0M/year for computer costs. This assumes 1 man year=$200k for salary, overhead, and infrastructural needs (fully burdened).
2. Annual budget





2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

Totals

Enhanced HWRF evaluation total ($M)

2.1

2.5

2.5

2.5

3.0

3.0

3.0

3.0

3.0

3.0

27.6

Improved use of inner core observations total ($M)

1.0

1.0

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

14.0

Analysis and archival of data total ($M)

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

10.0

Observation and instrument development total ($M)

3.0

6.0

1.5

3.0

1.5

1.5

3.0

1.5

1.5

1.5

24.0

Total ($M)

7.1

10.5

6.5

8.0

7.0

7.0

8.5

7.0

7.0

7.0

75.6

3. Justification


Supporting the proposed science plan requires $2.8M/year on average for enhanced HWRF evaluation, where $1M/year is for computational costs. The remainder covers manpower activities (~12-13 man years including principal investigators, research associates, post-docs, and students). The improved use of inner core data effort averages $1.4M/year in manpower activities (~6-7 man years). Analysis, evaluation and validation effort manpower needs are estimated to average $1M per year, with about 10% for computing needs activities (~4 man years). Observation and instrumentation development costs average $2.6M per year. This estimate is about half for manpower (~6-7 man years) and half for acquiring new observational capabilities and data collection. In all cases, resources for manpower are to be roughly evenly split between NOAA and non-NOAA personnel (university and other private institutes). Manpower for administrative support is expected to be 1 person per year at AOML.
The observation costs are $1.5M per year, except for three major field experiment years in 2005, 2008, and 2011 when the costs double to $3M per year. The $1.5M is broken down roughly into the cost for 75 flight hours with full overhead on each of the NOAA WP-3D and G-IV aircraft, expendables for the NOAA and Air Force Reserve aircraft (300 GPS sondes and 200 AXBTs), travel and overtime for scientists to participate in flights, and telecommunication charges for the satellite communications. In the major field program years, the costs are increased to accommodate twice the flight hours, GPS sondes, AXBTs, travel, overtime, and telecommunications charges, plus an additional $750K per year for AXCPs, AXCTDs, and Lagrangian floats to map the OML structure.
The additional ($4.5M) observation and instrument costs in 2006 are for the development and installation of a DIAL system on one WP-3D, procurement and installation of upgrades to both WP-3D microphysical probes, procurement and installations of IWRAP systems on both WP-3D aircraft, and procurement and installation of new SFMR and AXBT systems for both WP-3D aircraft and four Air Force Reserve C-130J’s.
Other costs include those for non-modeling computing (e.g., servers and disk space to support the data collection and the observational and model data archive and analysis tools estimated at $1M/year the first three years and about $500K/year the remaining years.), and non-field experiment related telecommunications and travel (e.g., meetings, workshops, etc. estimated at $15K/year).
D. Current and Pending Support
Base is Hurricane Research Division ~$1.5M; GFDL $0.4M; EMC $0.4M
E. Facilities, Equipment, and Other Resources
NOAA and Air Force Reserve (AFRES) Aircraft

  • WP-3D hours

  • G-IV hours

  • AFRES C-130J hours

  • telecommunications





Download 194.99 Kb.

Share with your friends:
1   2   3




The database is protected by copyright ©ininet.org 2024
send message

    Main page