Otec aff/neg otec aff



Download 1.05 Mb.
Page25/37
Date26.11.2017
Size1.05 Mb.
#35498
1   ...   21   22   23   24   25   26   27   28   ...   37

OTEC Fails




OTEC not viable - expensive and inefficient


Science Clarified 7 [“Science and Technology: Energy Alternatives,” http://www.scienceclarified.com/scitech/Energy-Alternatives/index.html]
In theory, an OTEC system could continuously generate upward of 160 million watts of electricity. This amount of electricity could supply one hundred thousand homes with all of their energy needs on a daily basis. Yet, a large portion of this electricity needs to be used by the system itself to pump the cool water to the top of the structure. Many scientists feel this makes an OTEC system a poor choice for energy production. Presently, the concept of OTEC systems is being heavily researched. Japan has shown great interest in developing them to power its coastal cities. The United States has researched sites where an OTEC system may be effective, but plans to construct one are not yet underway. Some energy analysts believe OTEC systems will never become truly competitive with other renewable resources because of the high cost of building and maintaining the units. This, coupled with a low energy output, in comparison to the amount of energy used to run the system itself, may help to explain why OTEC systems have not yet been fully developed, although the concept has been researched for over fifty years.

OTEC can’t produce enough energy to solve


Dworsky 6

(Rick, has been involved in environmental conservation and energy issues for over 30 years in government and private industry, “A warm bath of energy -- ocean thermal energy conversion”, http://www2.energybulletin.net/node/16811, Accessed 6-27-14, LKM)


Given all the fantastic promise OTEC presents, the amount of useful energy that can be obtained from each cubic meter of sea water is relatively small. The quantity of water that would have to be processed to produce a significant amount of useful energy would be enormous. Deep cold water intake tubes 11 meters (36 feet) in diameter with pumps of the same scale are proposed for 100 megawatt units. "The discharge flow from 60,000 MW (0.6 percent of present world consumption) of OTEC plants would be equivalent to the combined discharge from all rivers flowing into the Atlantic and Pacific Oceans (361,000 m3 s-1)." [3] OTEC is a technology of oceanic magnitude. To ameliorate the enormous problems of Global Warming, Peak Oil, Fresh Water, and Food supplies, we are going to need proportionally large solutions. Our task would be easier if we could reverse Human Population pressures.

Large scale OTEC fails-infeasible


Mckenna 8

(Phil,Staff writer at New Scientist, “Plumbing the Oceans Could Bring Limitless Clean Energy”, http://www.newscientist.com/article/mg20026836.000-plumbing-the-oceans-could-bring-limitless-clean-energy.html?page=2,Accessed 06-27-14, LKM)



Still, both teams will have to work out issues such as how to connect the floating, bobbing platforms to fixed submarine power lines. Heat exchangers will have to be designed in a way that prevents excessive buildup of algae, barnacles and other marine organisms that could clog the system.¶ If these test plants are a success, larger, commercial-scale plants could transform the energy equation on Hawaii, where nearly 77 per cent of electricity is generated by burning oil. "It will be the major energy game changer for our state and elsewhere in the world if we can get OTEC working well at the 100 MW level or larger," says Lockheed collaborator Reb Bellinger of Makai Ocean Engineering.¶ But scaling up won't be easy. "A 100 MW plant might have a pipe 30 feet in diameter suspended 3000 feet. That's not a small challenge. You've got this huge structure vertically suspended. You've got a lot of stresses and strains from current, from the movement of platform on the surface - how you are going to anchor it and install it?" asks Bellinger.¶ Smaller designs have already run into trouble. In 2003, Indian engineers building a 1 MW ocean thermal plant attempted to lower an 800-metre cold water pipe into the ocean from a barge in the Bay of Bengal only to lose the pipe in 1100 metres of water. A new pipe met the same fate the following year. "Both times there were some winch problems and it fell to the bottom of the sea," says Subramanian Kathiroli, director of India's National Institute of Ocean Technology. "I don't think we will ever be able to go beyond 5 to 10 MW with present knowledge," he says.¶ Yet the technology will have to be scaled up if OTEC is ever to make a significant impact on the green power market. Hans Krock, who has worked on OTEC designs for the University of Hawaii, the US Department of Energy and others since 1980, says he's tired of testing. "Pilot tests have been done," Krock says. "It's not a matter of design, it's a matter of getting the economics right.”

OTEC is inefficient—extraction limitations


Energy Bulletin 6 [“A warm bath of energy: ocean thermal energy conversion,” 6-5-06, http://www.energybulletin.net/node/16811, KAPUSTINA]
Given all the fantastic promise OTEC presents, the amount of useful energy that can be obtained from each cubic meter of sea water is relatively small. The quantity of water that would have to be processed to produce a significant amount of useful energy would be enormous. Deep cold water intake tubes 11 meters (36 feet) in diameter with pumps of the same scale are proposed for 100 megawatt units. "The discharge flow from 60,000 MW (0.6 percent of present world consumption) of OTEC plants would be equivalent to the combined discharge from all rivers flowing into the Atlantic and Pacific Oceans (361,000 m3 s-1)." [3] OTEC is a technology of oceanic magnitude. To ameliorate the enormous problems of Global Warming, Peak Oil, Fresh Water, and Food supplies, we are going to need proportionally large solutions. Our task would be easier if we could reverse Human Population pressures. OTEC may be one of our best hopes for the environmentally clean, sustainable solutions we need to solve our global energy and environmental problems - or at least a substantial chunk of them. In combination with other renewable sources, efficiency gains, conservation and adequate voluntary population management, we may be able to maintain a semblance of world civilization. Perhaps we can still save our Nautilus.


Download 1.05 Mb.

Share with your friends:
1   ...   21   22   23   24   25   26   27   28   ...   37




The database is protected by copyright ©ininet.org 2024
send message

    Main page