227
Figure A P-y curve for static and cyclic loading in sand (after Reese et al. 1974). The p-y curve for sand shown in Figure A can be obtained using the following procedure
1. Establish the soil friction angle Ο, soil unit weight Ξ³, and pile diameter
D.
2. Calculate the following parameters for subsequent
calculation as follows πΌπΌ =
β
2
; π½π½ = 45 +
β
2
; πΎπΎ
0
= 0.4; ππππππ πΎπΎ
ππ
= tan β
β
2
οΏ½ Equation A)
3. Calculate the ultimate resistance per unit length of pile/shaft using the smaller of the values given by the following equations Equation Ab
ππ
π¨π¨ππ=π²π²
ππ
π«π«π«π«π«π«οΏ½ππππππ
ππ
π·π·βπ«π«οΏ½+π²π²
ππ
π«π«π«π«π«π« ππππππ β
Equation A) For sand below the water table, the submerged unit weight (Ξ³
β) should be used.
ππ
π π π‘π‘
= πΎπΎππ οΏ½
πΎπΎ
0
ππ tan β
sin tan β β
) cos πΌπΌ +tan tan β β
)
(π·π· + ππ tan π½π½ tan πΌπΌ) + tan tan β
sin π½π½ β tan πΌπΌ) β πΎπΎ
ππ
π·π·οΏ½
4. In Step 3,
find the depth ztwhere there is an intersection of Equations A and A.
5. Select a depth at which a p-y curve is desired.
6. Establish
yuas 3
D/80. Compute p u
as follows
ππ
π’π’=π΄π΄
π π
οΏ½οΏ½οΏ½οΏ½ππ
π π
ππππ Equation A-25)
Use appropriate
values for or from Figure A, for the particular non-dimensional depth, and the static or cyclic case.
π΄π΄
π π
οΏ½οΏ½οΏ½
7. Establish
ymas
D/60.
Calculate pmas follows
ππ
ππ
= π΅π΅
π π
ππ
π π
ππππ ππ
ππ
= Equation A)
π΄π΄
ππ
οΏ½οΏ½οΏ½
228 Use appropriate values for
Bsor
Bcfrom
Figure A, for the particular non-dimensional depth, and for the static or cyclic case.
8. Establish the initial straight line portion of the p-y curve.
ππ = (ππππ)π¦π¦ Equation A) Use the appropriate value of
k from Table Ab Table A Representative values of k for sand under static and cyclic loading.
Share with your friends: