TECHNOLOGY AREA(S): Materials/Processes
OBJECTIVE: To develop, improve and demonstrate newly introduced additive manufacturing (AM) technology capable of producing advanced material components consisting of alumina, silicon carbide and/or boron carbide and validate its use in high performance applications such as armor components.
DESCRIPTION: The U.S. Army's initiative for body armor that can be tailored to the dismounted soldier in a short timeframe, as well as being a more cost effective solution, has placed increasing pressure on traditional manufacturers of advanced materials. Traditional custom armor manufacture requires specially fabricated tooling. Because of this, custom components in small quantities are cost prohibitive. In addition to the cost, long lead times on the order of several months are the norm. These large upfront costs and long lead times associated with traditional manufacturing has generated increasing interest for the AM market due to its low cost, customizable nature. With AM's many superior qualities there are drawbacks that still exist, which has limited its widespread adoption. Among these drawbacks, poor material performance is of primary concern. With the layer-by-layer building method used with AM processes, mechanical strength metrics such as density, flexural strength, and Knoop hardness are often very low in comparison with traditionally-manufactured armor ceramics. Also, materials used with AM processes must be engineered for use with a specific AM process which often results in long term research efforts. To address these material challenges, an AM process that can produce high geometric complexity parts with very high mechanical performance is of great interest. In order for the AM process to be commercially feasible, high deposition rates are required for fast component throughput. A solution of this nature has the possibility of expanding armor protection methods as well as allowing the dismounted soldier to fabricate custom armor articles from behind enemy lines, giving them a tactical advantage. The advanced materials that are of interest are alumina, silicon carbide, and boron carbide. Alumina ceramic (AL2O3), a general purpose material, will be the material initially used to compare parts fabricated via the AM process and traditional manufacturing due to its lower cost and ease of processing. Upon successful validation of the AL2O3 AM parts using metrics such as density, flexural strength, as well as dynamic analysis including Hugoniot shock response characterization, the silicon carbide (SiC) and boron carbide (B4C) materials will be investigated. The SiC and B4C materials, which are used in armor ceramic applications due to their excellent strength to weight properties, are the intended materials to be used for replacement of current traditionally manufactured armor components. Once initial feasibility is proven through the testing metrics mentioned above, comparison of these materials to traditional B4C armor will take place in the same manner as the testing of AL2O3.
The advanced materials developed under this effort will have a broad range of applications within the military and commercial sectors. The aerospace / defense industries, along with the nuclear sector are areas that could benefit from advances made within this project. Development of a high performance AM process for advanced materials would provide a solution to commercial markets seeking an equal performing replacement to traditional manufacturing. The AM process would also significantly lower cost for custom and short run production situations due to the elimination of tooling associated with traditional manufacturing methods.
PHASE I: Develop an additive manufacturing process for advanced materials which uses materials including alumina, silicon carbide, or boron carbide. The system should be capable of producing a near-net shape, highly dense unfired (green) advanced material preform. The green preform must not contain any type of infiltrant in order to maximum the mechanical performance of the fully sintered part. The requirements of the process are such that the deposition rate is 30 grams per minute of an advanced material feedstock to facilitate rapid part fabrication. The components fabricated will be subject to quasi-static, dynamic, and in-situ characterization and logged in an ARL armor mechanisms database. The AM components will be compared to traditionally manufactured armor ceramics on mechanical performance metrics such as density, flexural strength, and hardness. Successful completion of this phase is realized when the AM components performance metrics are within 5% of traditional manufactured armor. The deliverables for Phase I will include process development documentation as well as material development documentation and characterization.
PHASE II: Optimize the material development of boron carbide through further characterization and in-situ ballistic testing. The AM system shall be streamlined such that a degree of control over the microstructural properties of the fabricated component can be exhibited. Control of the material's microstructure is of importance as it can have a significant influence on the ballistic performance of the armor component. Manipulation of the microstructure may be accomplished through layer-to-layer orientation control and bonding parameters, printer feedstock powder particle distribution, as well as individual layer thickness. These parameters affect critical material properties such as density, flexural strength, and Hugoniot shock response characteristics which are the same metrics used to evaluate traditional armor components. Upon completion of Phase II, fully dense advanced material components should be capable of displaying similar mechanical and ballistic performance to that of traditionally manufactured advanced material ballistic protection. If the developed process warrants, a material integrity detection system shall be integrated to ensure fabricated component integrity. The AM components will be compared to traditionally manufactured armor ceramics on mechanical performance metrics such as density, flexural strength, hardness, as well as fragmentation behavior observed through low velocity impact testing. Upon matching or exceeding traditionally manufactured performance metrics, in-situ ballistic testing would take place to evaluate projectile erosion/fragmentation mechanics. Successful completion of this phase is realized when AM component performance meets or exceeds traditionally manufactured armor in both static analysis as well as in-situ ballistic testing. Deliverables for Phase II will include process development documentation, material development documentation including feedstock formulation, and a prototype additive manufacturing system capable of producing high performance advanced material components.
PHASE III DUAL USE APPLICATIONS: The AM advanced materials developed under this effort will be used in a broad range of applications within the military and commercial sectors. Immediate applications within the military sector include rapid manufacturing capability of ceramic plate inserts (also known as SAPI) on body armor and protective structures at forward operating bases. This capability will significantly reduce the lead times, potential collateral damage, and extremely high cost compared to traditionally manufactured ceramics. The developed process will have an impact in the commercial sector in areas such as aerospace, medical, and alternative energy due to the lower component cost coupled with higher design complexity. This technology would be adopted to industry through various industry researchers representing a number of commercial sectors, i.e. the automotive industry, that are seeking suitable technologies to complement or replace traditional advanced ceramic manufacturing. Finally, the AM ceramic materials, because of their lower barrier of entry in terms of cost, will be integrated additional markets which are currently unknown.
REFERENCES:
1. Tyrone L. Jones, Jeffrey J. Swab, Benjamin Becker, "The First Static and Dynamic Analysis of 3D Printed Sintered Ceramics for Body Armor Applications," 40th International Conference on Advanced Ceramics and Composites, January 201
2. Benjamin Becker, "Additive Changes to Advanced Ceramics," Ceramic Industry, April 2014, pp. 12-14.
3. Lisa Roberson, "Local startup company uses 3-D printing for Armor," Chronicle Telegram, March 16, 2016, pp. D8.
4. Tyrone L. Jones, "Investigation of the Kinetic Energy Characterization of Advanced Ceramics," April 2015, ARL-TR-7263, APG, MD.
KEYWORDS: additive manufacturing, 3-D printing, rapid fabrication, advanced materials, body armor, alumina, silicon carbide, boron carbide
TECHNOLOGY AREA(S): Materials/Processes
OBJECTIVE: Design scalable manufacturing processes that produce yarns that can store energy and can be knit or woven into wearable textiles capable of storing energy.
DESCRIPTION: New high-performance electronic and 'smart' textile technologies with advanced functionalities (e.g., sensing, physical actuation) are being developed although many functional applications are limited by the availability of low cost, integrated energy storage technologies. Scalable, inexpensive manufacturing processes that produce yarns capable of storing energy are required for new breakthroughs within the wearable electronics sector. In addition to energy storage, functional yarns must also be knitted and woven into comfortable/wearable materials that are capable of wicking moisture and allowing full range of motion in ways that are similar to common athletic wear. Other desirable attributes for textile-based energy storage are that the technology solution(s) should be electrochemically stable, charge and discharge rapidly, and maintain requisite power density for thousands of duty cycles and/or for the life of the garment. To produce the requisite amount of functional yarn, manufacturing processes must be capable of producing kilometers of energy storage yarns that maintain desirable mechanical attributes both for knitting/weaving and, ultimately, yield sufficient yardage of wearable textile materials to be relevant for implementation. Finally, the energy storage technology should not leach toxic chemicals (e.g., electrolytes or nanomaterials such as carbon nanotubes) during normal wear, nor during laundering of fabrics. Furthermore, gentle laundering should not disable the energy storage device.
PHASE I: Develop manufacturing processes that are capable producing pounds of yarn (tens of kilometers of yarn) that are capable of storing energy a specific capacitance over 25 mF/cm. Additionally, yarns must have mechanical properties that allow them to be knitted and/or woven into flexible fabrics. Resultant fabrics must maintain mechanical properties suitable to be worn (e.g. textiles should withstand bending without major loss of performance).
PHASE II: Demonstrate manufacturing throughput produces enough yarn to produce at least one hundred square yards of fabric capable of store energy and a specific capacitance over 50 mF/cm. Energy storage yarns must have mechanical properties that are suitable for industrial knitting and weaving machinery. Resulting fabrics must be flexible and capable of crumpling without showing major loss of energy density. Fabrics should also be demonstrated to be capable of withstanding laundering without major loss of energy density.
PHASE III DUAL USE APPLICATIONS: This product would be used in a broad range of military and civilian applications where wearable textiles with integrated electrochemical power sources could power functionalities ranging from light emitting diode to sensors, and actuators.
REFERENCES:
1. Kristy Jost, Genevieve Dion, and Yury Gogotsi, "Textile energy storage in perspective", J. Mater. Chem. A, 2014, 2, 10776-10787.
2. Shengli Zhai, H. Enis Karahan, Li Wei, Qihui Qian, Andrew T. Harris, Andrew I. Minett, Seeram Ramakrishna, Andrew Keong Ng, and Yuan Chen, "Textile energy storage: Structural design concepts, material selection and future perspectives" Energy Storage Materials, 2016, 3, 123-139.
3. Ruirong Zhang, Yanmeng Xu, David Harrison, John Fyson, Darren Southee & Anan Tanwilaisiri (2015) Fabrication and characterization of smart fabric using energy storage fibres, Systems Science & Control Engineering, 3:1, 391-396, DOI: 10.1080/21642583.2015.1049717
KEYWORDS: Electronic Textiles, Energy Storage, Functional Yarn, Capacitor
A17A-T014
|
TITLE: Biosensor for Detection of Synthetic Cannabinoids
|
TECHNOLOGY AREA(S): Chemical/Biological Defense
OBJECTIVE: Develop a drug identification kit that utilizes biomolecular receptor-ligand interactions to detect the presence of cannabinoids.
DESCRIPTION: Illicit drug use is a widespread problem within the U.S. Armed Forces and the Department of Defense is regularly tasked with identifying unknown illicit substances in difficult and demanding environments. There are devices currently available for detecting the presence of drugs in samples; however, these devices are typically bulky and require a high level of training, making them inoperable in field environments. Furthermore, current methods rely on identifying known compounds based on chemical structures, allowing new compounds to evade detection.
One illicit drug class that is becoming a significant problem in the U.S. Armed Forces is synthetic cannabinoids, which imitate the effects of the cannabis component THC (1). Synthetic cannabinoids pose a unique concern because there are many derivatives available; when one synthetic cannabinoid is identified and regulated, known chemicals can be modified to produce derivatives that are undetectable. Illicit drugs act as ligands for receptors within the human nervous system (2) and many classes of drugs, including synthetic cannabinoids, act on a single receptor type. The goal of this topic is to utilize biomolecular receptor-ligand binding interactions to produce a biosensor to determine whether any molecule with an affinity for a cannabinoid receptor (CB1 or CB2) is present in a sample (3-5). This solution has the potential to be able to detect multiple synthetic cannabinoid derivatives with the same biosensor. Furthermore, the solution would be based on a binding event as opposed to recognition of a specific chemical structure of a drug, eliminating structural dependency and allowing for the detection of emerging compounds.
The proposed solution should be portable (i.e., <5 pounds), easy-to-use, stable over a long period of time, inexpensive to operate, rugged, operable in a wide range of field conditions, and require minimal training to operate. The proposed solution must meet the performance (sensitivity and specificity) of currently available test methods and reduce the operator/analysis steps. Desired sensitivity is within "real world" range, detecting cannabinoid compounds at nanogram to milligram levels, with accuracy levels in the 90-95% range. Furthermore, the biosensor should require a small amount of sample and ensure environmentally safe disposal of any testing materials.
PHASE I: Develop, test, and/or demonstrate a biosensor platform utilizing a cannabinoid receptor (CB1 or CB2) that allows for detection of the presence of synthetic cannabinoids. Conduct preliminary testing of specificity and sensitivity. Develop a prototype concept capable of achieving the performance requirements listed in the description above.
PHASE II: Incorporate the biosensor platform from Phase I into the prototype design from Phase I. The prototype must be able to detect a minimum of three (3) synthetic cannabinoid derivatives (e.g., JWH-018, 5F-AMB) and a minimum of (3) natural cannabinoids (e.g., tetrahydrocannabinol, cannabinol). Demonstrate detection of cannabinoid compounds in the nanogram to milligram range with a minimum accuracy level of 90%. Determine the reproducibility and limits of detection of the system. Demonstrate reliable operation under a range of operating and storage conditions. Demonstrate the prototype in a realistic field environment.
PHASE III DUAL USE APPLICATIONS: The proposed technology has a broad range of potential uses in civilian and military settings. The biosensor platform can be transitioned to various other classes of drugs and can be used by intelligence operations, law enforcement, and first responders.
REFERENCES:
1. Loeffler, G., Hurst, D., Penn, A., & Yung, K. (2012). Spice, bath salts, and the U.S. military: the emergence of synthetic cannabinoid receptor agonists and cathinones in the U.S. Armed Forces. Military Medicine, 1041-1048.
2. Lambert, D. (2004). Drugs and receptors. British Journal of Anaesthesia, 181-184.
3. Turner, A. (2013). Biosensors: sense and sensibility. Royal Society of Chemistry, 3184-3196.
4. Vigneshvar, S., Sudhakumari, C., Senthilkumaran, B., & Prakash, H. (2016). Recent Advances in Biosensor Technology for Potential Applications - An Overview. Frontiers in Bioengineering and Biotechnology.
5. Patel, S., Nanda, R., Sahoo, S., & Mohapatra, E. (2016). Biosensors in Health Care: the Milestones Achieved in Their Development towards Lab-on-Chip Analysis. Biochemistry Research International.
KEYWORDS: biosensor, cannabinoid, receptor
A17A-T015
|
TITLE: Sealed Container Content Identification
|
TECHNOLOGY AREA(S): Chemical/Biological Defense
OBJECTIVE: To develop a compact and rugged, computer-aided device for use by chemical-biological defense forces that is capable of identifying the contents of liquid-filled containers while making contact with the container or at short stand-off without having to drill or otherwise penetrate the container.
DESCRIPTION: The Department of Defense (DoD) has the need for a ruggedized, handheld device supported by a compact (smartphone or similar) platform that will permit battlefield chemical-biological defense forces to rapidly and non-invasively assess the contents of liquid filled containers. These containers could include bottles, cans, artillery shells, industrial containers (to include 55 gallon drums), or storage barrels made of glass, plastic, or metal of various thicknesses. Research was conducted nearly two decades ago to address this need using a swept-frequency acoustic interferometry (SFAI) system among other approaches. Although testing of prototype units was encouraging, the technical approach never transitioned to operational or commercial usage. The DoD seeks to leverage research investments in nondestructive evaluation (NDE) and testing and other related fields over the past two decades to pursue a solution to this need. A parallel effort to the acoustic interferometry system resulted in the current commercial-off-the-shelf (COTS) Ortec instrument that utilizes a neutron spectroscopy approach. Solutions that utilize nuclear materials and/or nuclear radiation will not be considered under this topic. Solutions must be oriented on the development of automatic algorithms and related technologies so the user does not need to perform data interpretations in battlefield settings. Solutions will address challenges associated to varying wall thicknesses of the containers and mixtures contained within the containers. The portable device should be powered by existing, rechargeable batteries and capable of continuous operation for a minimum of one hour without having to change or charge the batteries.
PHASE I: Develop a computer-aided technology system design that meets the stated objectives listed above. Demonstrate a pre-prototype system on a laptop or smaller platform that can automatically identify at least six liquid chemicals (chemical agent simulants, explosive simulants, and common toxic industrial chemicals and fuels) within sealed containers within 1 minute and with a 90% probability of success. In addition, demonstrate proof-of-concept with a 2- or 3-component mixture. Identify additional automated algorithms and/or technologies that could be implemented in the Phase II prototype system.
PHASE II: Develop a prototype, computer-aided chemical identification system on a ruggedized, handheld device supported by a compact platform (smartphone or similar) that will meet the requirements defined above and permit usage in battlefield settings. Demonstrate the device to identify the 100 likely chemical agents and precursors along with over 20 common non-hazardous liquids in glass, plastic, and metal containers in less than 1 minute and with a 95% probability of success. In addition, potential surface interferents (dirt, corrosion, etc.) should be considered. IF the device must be ’trained’ for a library of chemicals, then the device should indicate with a 95% probability of success when it is tested on a liquid that is included in the 'trained' database and a 90% probability of success in identifying that the liquid is an unknown, not in the 'trained' database.
PHASE III DUAL USE APPLICATIONS: The proposed technology has potential use across the Department of Defense to assess the contents of sealed, liquid-filled containers and thus speeding the assessment of required responses. In addition to being highly valuable to the chemical and biological defense community, the same device can be utilized by first responders to evaluate and confirm container contents.
REFERENCES:
1. Sinha, Dipen N., and Gregory Kaduchak (2001) Noninvasive Determination of Sound Speed and Attenuation in Liquids, Modern Acoustical Techniques for the Measurement of Mechanical Properties, Vol. 39. Academic Press, September 2001.
2. Ortec (2015) PINS3-CF Brochure, www.ortec-online.com/download/PINS3-CF.pdf.
3. Sinha, Dipen N., Kendall N. Springer, Wei Han, David C. Lizon, and Shulim Kogan (1997). Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare compounds, Los Alamos National Laboratory Report No. LA-UR-97-3113, December 1, 1997.
KEYWORDS: Ultrasound, Electromagnetics, Nondestructive Evaluation, Nondestructive Testing, Chemical Identification
A17A-T016
|
TITLE: Method for Locally Measuring Strength of a Polymer-Inorganic Interface During Cure and Aging
|
TECHNOLOGY AREA(S): Materials/Processes
OBJECTIVE: Develop and demonstrate a method to locally measure quality of the interface in an adhesive system (metal substrate/polymeric resin) during resin curing and during aging under hot/wet conditions.
DESCRIPTION: Surface treatment processes dominate the durability of interfaces in adhesively bonded joints, fiber reinforced composites, and polymer encapsulated electronics in military and commercial applications.
1. These surface treatments may include abrasion (e.g., grit-blasting), chemical etching, polishing, chemical functionalization (e.g., with coupling agents), and they are used to control the wettability, chemical functionality, and morphology of the interface between an inorganic substrate (e.g., aluminum) and an adhesive/polymer encapsulant (e.g., an epoxy resin with a diamine curing agent). The wettability, chemical functionality and morphology all influence (1) the initial strength of the interface during curing of the polymer, and (2) the long-term durability of the bond under hot/wet conditions experienced in theatre. The durability of these bonds is often dictated by the ability of the interface of the cured polymer system to resist moisture infiltration and the corresponding degradation of the adhesion between the adhesive and substrate (e.g., bond breakage, corrosion).
5>