Qualification and title awarded – Licenciatura in Computer Science, Licenciado



Download 199.37 Kb.
Page2/4
Date03.05.2017
Size199.37 Kb.
#17035
1   2   3   4







8501N2 - Computational Mathematics

Regime: S1


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 70
Créditos: 7
Métodos de Ensino:

2 hours lectures/week; 3 hours example classes in computer laboratory/week.

Programa:

Algebraic computational systems: graphical, symbolic and numerical capabilities. Introduction to programming with a computational system.

Métodos de Avaliação:

Two tests in computer laboratory and a practical assignment, in group, shared with the course of Linear Algebra / final written exam.

Pré-requisitos:

None.


Resultados de Aprendizagem:

Be familiar with the basic rules of the system Mathematica. Search for information about built-in functions using existing help systems in Mathematica. Understand the notions of precision and accuracy of a number. Define functions/programmes to solve specific problems using functional and rule-based programming. Use rewriting rules as assignment and programming elements. Build 2- and 3-dimensional graphic objects. Manipulate and build graphic objects using graphics primitives and style directives. Solve problems in Real Analysis, Linear Algebra and Number Theory with built-in and user-defined functions. Import and export data.

To give to the student a powerfull tool that will allow a modern aproach to the study and  discovery of mathematics.

Bibliografia:

Heikki Ruskeepää, Mathematica Navigator: Graphics and Methods of Applied Mathematics (Academic Press,1999);

R.J. Gaylord, S.N. Kamin & P.R. Wellin, An Introduction to Programming with Mathematica (TELOS 1996);

Nancy Blachman, Mathematica: a practical approach (Prentice Hall, 1992)

Wolfram, S., Mathematica: A System for Doing Mathematics by Computer (Addison Wesley, 1991);


Gray, J., Mastering Mathematica (Academic Press, 1994);
Majewski, M., MuPAD Computing Essencials (Springer, 2004).
Docentes:
Maria Suzana Freitas de Sousa Mendes Gonçalves




8501N3 - Functional Programming

Regime: S1


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 70
Créditos: 8
Métodos de Ensino:

2 hours/week - lectures; 1 hours/week - examples classes; 2 hours/week - examples classes in computer room work.

Programa:

The functional programming paradigm using Haskell. Expressions, values and reduction. Basic types, algebraic types, induction and recursion. Higher-order functions. Polymorphism, classes, principal types. Modularity. Monads.

Métodos de Avaliação:

Written exam, tutorial exercises and project evaluation.

Pré-requisitos:

None.


Resultados de Aprendizagem:

At the end of the course the student should be able t


● Write programs in a functional style.
●  Understand the concepts of inductive type and recursion.
●  Define algebraic types for modeling a problem, and program with them.
●  Understand the notions of principal type and polymorphism.
●  Use higher-order functions.

Bibliografia:

Introduction to Functional Programming, Richard Bird and Philip Wadler, Prentice-Hall, 1988 - Introduction to Functional Programming using Haskell, Richard Bird, Prentice-Hall, 1998 - The Craft of Functional Programming, Simon Thompson, Addison-Wesley, 1996.

Docentes:


Maria João Gomes Frade
Jorge Miguel Matos Sousa Pinto

Olga Pacheco

José Carlos Ramalho






8501N1 - Linear Algebra

Regime: S1


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 84
Créditos: 8
Métodos de Ensino:

Theoretical and practical classes.

Programa:

Matrices, Linear systems, Vector spaces, Linear transformations, Determinants, Eingenvalues and Eingenvectors.

Métodos de Avaliação:

Two written tests and a practical assignment, in group, shared with the course of Computational Mathematics / final written exam.

Pré-requisitos:

Elementary set theory.

Resultados de Aprendizagem:

By the end of the course the students should be able to


- execute matrix operations (addition, scalar multiplication, multiplication, transposition and inversion);
- solve  systems of n linear equations with m variables;
- present simple arguments and conclusions in Linear Algebra with reasonable clarity;
- identify and apply properties of vector spaces;
- solve problems  related to linear transformations;
- identify and characterize diagonalizable linear transformations.

Bibliografia:

António Monteiro, Álgebra Linear e Geometria Analítica (McGraw Hill, 2001)

Maria Paula Marques Smith, Emília Giraldes & Victor Hugo Fernandes, Curso de Álgebra Linear e Geometria Analítica (McGraw Hill, 1995).


T. Blyth , E.F. Robertson, Basic Linear Algebra, (Springer Verlag).
Eugene Johnson , Linear Algebra with MATHEMATICA®, Brooks/Cole - Symbolic Computation Series, 1999.

Docentes:


Maria Cláudia Freitas de Sousa Mendes Araújo

Maria Isabel Caiado






8501N4 - Topics in Mathematics

Regime: S1


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 70
Créditos: 7
Métodos de Ensino:

2 hours/week - lectures. 3 hours/week - examples classes.

Programa:

Introduction to the propositional calculus: connectives, formulas, truth-values, valuations, tautologies, logic equivalences.  Representation of sets, binary relations, functions, families of sets, equivalence relations, quotient sets. Finite and infinite sets, numerable and non-numerable, Cantor's theorem.  Induction and complete induction over natural numbers. Partially ordered sets: special elements, well-ordered sets, Zorn's lemma.

Métodos de Avaliação:

Written final exam (worth 70%) and two written exercises (worth 15% each).

Periodic assessment (two written tests) / Written final exam.

Pré-requisitos:

None.

Resultados de Aprendizagem:



On successfully completing the course the student should be able t
1. apply elementary properties of propositional and quantifier logic operations;
2. construct mathematical arguments using common proof techniques, including inductive proofs;
3. explain the basic concepts of sets, relations and functions, and perform elementary operations involving them;
4. exemplify basic concepts of equivalence and order relations;
5. distinguish between numerable and non-numerable sets.

Bibliografia:

Foundations of abstract mathematics, Kurtz, D.C., McGraw-Hill, 1992.

Introduction to set theory, K. Hrbacek and T. Jech, Marcel Dekker, Inc.2nd edition.

Curso de Análise Matemática, J. Santos Guerreiro, Escolar Editora, 1989.

Bloch, E., Proofs and Fundamentals (Birkhauser, 2000).

Docentes:
José Carlos Cruz da Costa

Maria Joana Costa Cruz Oliveira Torres Ramos

Maria Paula Beirão Oliveira Marques Smith
Maria Suzana Freitas Sousa Mendes Gonçalves





8502N2 - Calculus

Regime: S2


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 84
Créditos: 7
Métodos de Ensino:

3 hours/week - lectures; 3 hours/week - examples classes.

Lectures (3 hours/week) and problem solving sessions (3 hours/week). The problems to be solved are proposed to the students with 1 or 2 weeks in advance.

Programa:

Sets and Functions: basic topics; Real numbers; Functions: limit and continuity; Integrals; Sequences of real numbers; Series of real numbers.

Sequences and series of real numbers. Power series. Real functions of a single variable. Limits and continuity. Derivatives. Taylor series. Integrals and applications.

Métodos de Avaliação:

Written examination.


Written examination (70%) and practical class assessment (30%).

Written tests (problem solving).


Pré-requisitos:

There are no prerequisites.

Basic knowledge of sequences and real functions of a single variable.

Resultados de Aprendizagem:

Dealing with real functions of one variable, to practise the rational thought, the immagination and the spirit of searching, to develop the student's ability for intuitive and rigorous presentations.

1. To solve problems on sequences and series. – 2. To use basic results about functions (continuity, derivatives, integrals) to solve problems. – 3. To calculate limits, derivatives and integrals. – 4. To develop functions in power series. – 5. To use the Taylor’s formula to compute approximations for values of functions and to bound the error.

Bibliografia:

T. Apostol, Cálculo - Vol 1 (Ed. Reverté, 1991); J. Campos Ferreira, Introdução à Análise Matemática (Fundação Calouste Gulbenkian, 1987); E. L. Lima, Curso de Análise - Vol 1 (Projecto Euclides, 1995).

1. Calculus (8th ed.), R. Larson, R. P. Hostetler, B. H. Edwards, McGraw-Hill (2006); 2- Calculus (3rd ed.) Howard Anton, John Wiley & Sons (1988)

Docentes:


Ana Jacinta Pereira Costa Soares
Maria Helena Faria Mendonça Figueiredo

Rui Ralha





8502N6 - Computing System

Regime: S2


Tipo: Compulsory
Língua de Instrução: Portuguese
Carga Total: 56
Créditos: 5
Métodos de Ensino:

Presentation classes, problem solving classes/tutorials, lab classes.

Programa:

Foundations of computers technology and computing: structure and


organization of a computing system; data representation, including text,
images, integers, floating point values under IEEE 754, and the instruction
set of a CPU; analysis at the assembly level, of the execution of HLL
programs coded in an imperative language; analysis at the digital system
level, of the CPU, memory, busses and peripheral controllers.

Métodos de Avaliação:

Tests, Practical assignments e Exam.

Pré-requisitos: None.


Resultados de Aprendizagem:

1. To describe and analyse data in a computer (text, images, integers, FP reals and CPU instructions) coded in different number systems


2. To describe the structure and organization of a computing system, the functionalities of their components and the relationships between the abstraction levels of a computer
3. To identify the more relevant features in the instruction set of a CPU,and describe how instructions of an ISA type work
4. To analise and modify assembly code generated from a compiler for a typical CPU, including control/data structures and function/procedures call
5. To describe current hardware techniques at the memory hierarchy level and in the parallel execution of instructions, and its impact on system performance

Bibliografia:

Computer Organization and Architecture - Designing for Performance, William Stallings, Prentice Hall, 6th Ed., 2002
Computer Systems: A Programmer's Perspective (CS:APP), Randal Bryant and David O'Hallaron,  Prentice Hall, 2003

Docentes:


Alberto José Gonçalves Carvalho Proença




8502N3 - Discrete Mathematics

Regime: S2


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 70 5 hours/week
Créditos: 6
Métodos de Ensino:

2 hours/week - lectures; 3 hours/week - example classes.

Programa:

Elements of Graph Theory: basic concepts; eulerian graphs; hamiltonian graphs; planar graphs; Euler formula. Introduction to Number Theory: divisibility; prime numbers; diophantine equations; modular adition; congruences modulo an integer; linear congruences and systems of linear congruences; Fermat's Little Theorem and Euler's generalisation; Wilson's Theorem; application to criptography.

Métodos de Avaliação:

Periodic evaluation and final written exam.

Pré-requisitos:

None.


Resultados de Aprendizagem:

On successfully completing this course, students should be able t


- use the euclidean algorithm to evaluate the greatest common divisor of two integers;
- solve diophantine equations;
- apply properties of prime numbers and primality criteria;
- understand the notion of congruence modulo an integer and its properties;
- solve linear congruences and systems of linear congruences;
- understand the essential concepts in Graph Theory presented in the course discuss mathematical results with clarity and rigour, constructing simple proofs;

Bibliografia:

Burton, D. M., Elementary Number Theory (Wm. C. Brown Publishers, 1990)
Wiitala, S. A. , Discrete Mathematics - A unified approach (McGraw-Hill 1987)
Fejer, P.A., Simovici, D.A., Mathematical Foundations of Computer Science (Springer Verlag, New York, 1991).

Docentes:


Maria Paula Freitas Sousa Mendes Martins




8502N4 - Imperative Programming

Regime: S2


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 70
Créditos: 6
Métodos de Ensino:

Theorical and practical classes.

Programa:

Procedural (Imperative) programming The C language. Searching & Sorting. Recursion and Try-and-error algorithms. Linear Data Structures, static and dynamic (arrays and linked-lists): concepts and algorithms.

Imperative Programming Introduction: The Programming concept (aims, difficulties and stages); The other programming paradigms; Imperative Languages History; Descendent Analysis of Problems; The Algorithm Concept:. C Programming Language: History and Philosophy; Information representation: data types; Simple instructions and C control structures; Information Access and storage: file management. Dynamic Data Structures: pointers, lists and trees;. Search and Sort Algothms. Recursion: problems; mathmatical case studies; "try-and-error" problem resolution. Structured Data Types: List --- Stacks e Queues; Associative Arrays; Tree-like structures --- binary trees, decision trees, expression trees, etc.

Métodos de Avaliação:

Theoric mark (x 0.60) and practica mark (x 0.40).

Pré-requisitos:

None.

Resultados de Aprendizagem:



At the end the student should be able to decompose a problem into smaller problems and to specify an algorithm to each of these.
The student should be able to solve problems in the following areas: numeric calcultions, string manipulation, file manipulation, data structures processing (lists and binary trees). The student should also be able to code any algorithm in the C programming language.

Bibliografia:

Kernighan & Ritchie, The C Programming Language (ANSI C), 2nd edition, Prentice Hall Software series, 1988 P. Guerreiro, Elementos de Programação com C, FCA - Editora de Informática, 2001; L. Damas, Linguagem C, FCA - Editora de Informática, 1999; Leendert and Ammeraal, Programas e Estruturas de dados em C, Editora Presença, 1994; A.N. Ribeiro e J. Pina Miranda, Notas Práticas de Algorimtos e Estrruturas de Dados, Notas peda-gógicas, Univ. do Minho, 1995; J. A. Saraiva & A. N. Ribeiro, Estruturas de Dados: Listas ligadas dinâmicas. Notas peda-gógicas, Univ. do Minho, 1995.

Docentes:


José Carlos Ramalho

Alberto Simões







8502N5 - Language Theory

Regime: S2


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 56
Créditos: 6
Métodos de Ensino:

Lectures and tutorials.

Programa:

Regular languages, Finite Automata, Context-free Grammars, Push-down automata

Métodos de Avaliação:

Two tests during the semester; final exam.

Pré-requisitos:

Elementary set theory and induction.

Resultados de Aprendizagem:

- describe basic concepts about formal languages, automata, and grammars;

- identify regular languages;

- relate the notions of finite automata, recognizable languages, and regular languages;

- verify whether a word is accepted by a push-down automaton;

- determine the language generated by a context-free language and a push-down automaton recognizing it;

- understand automata as an abstract model of computation.

Bibliografia:

J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979; J. Costa, Autómatos e Máquinas de Turing, publicação do Departamento de Matemática da Universidade do Minho, 2004; J. Martin, Introduction to languages and the theory of computation, McGraw-Hill, 1996. T. Sudkamp, Languages and Machines, Addison-Wesley, 1997.

Docentes:


José Carlos Espírito Santo




8503N4 - Algebraic Structures

Regime: S1


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 6
Créditos: 7
Métodos de Ensino:

Lectures (3 hours/week); example classes (3 hours/week).

Programa:

Introduction to group theory. Introduction to ring theory. Lattices and Boolean algebras. Introduction to universal algebra.

Métodos de Avaliação:

Periodic assessment / Final written examination.

Pré-requisitos:

Basic set theory and elementary number theory.

Resultados de Aprendizagem:

The student should be able to:


1 – Understand the notion of algebra and, in particular, the notion of operation of arity n, performing calculations with operations.
2 – Distinguish some of the most important classes of algebras such as groups, rings, lattices and Boolean algebras, recognizing their fundamental properties.
3 – Recognize morphisms and interpret properties involving them.
4 – Apply operators on algebras, identifying the results.
5 – Identify quotient algebras.
6 – Solve problems and perform proves of basic results of the discipline.

Bibliografia:

B.A. Davey and H.A. Priestley. Introduction to lattices and order, Cambridge Univ. Press, 1990.
J.B. Fraleigh. A First Course in Abstract Algebra, Addison-Wesley, 1982.
T.W. Hungerford, Algebra, Springer, 1996.

S. Burris e H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, 1981.

Docentes:

Carla Albertina Carvalhinho da Silva Mendes






8503N1 - Algorithms and Complexity

Regime: S1


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 70
Créditos: 6
Métodos de Ensino:

Lectures, Tutorials and Lab Classes.

Programa:

Algorithms vs Programming Languages: what is an algorithm? Algebraic algorithmic languages. Decisions in deterministic, non-deterministic and probabilistic machines.

Introduction to “Domain Theory”. Introduction to “Probability Theory”. Random variables and probabilistic model of algorithms.

Asymptotic notation. P and NP problems. Reduction. NP-complete problems.

Fundamental algorithms: the 2SAT and 3SAT problems. Davis-Putnam algorithm.

Causality nets. Integer Linear Programming.

Métodos de Avaliação:

Written examination and practical assignment.

Pré-requisitos:

Elementary knowledge of imperative programming and data-structures.

Resultados de Aprendizagem:

To be able to design algorithms for solving problems of different kinds, using an appropriate strategy and adequate (including non-linear) data-structures.


Recognise patterns in algorithmic behaviour.
To analyse asymptotically the time and space behaviour of  algorithms. Classify algorithms according to its “worst-case” and average complexities.
To be able to identify an NP-complete problem, to reduce it to another problem, and to propose simple heuristics for finding approximate solutions.

Bibliografia:

José Manuel Valença. Algoritmos e Complexidade.Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. MIT Press, Cambridge,Mass., second edition, 2001.
Donald E. Knuth. The Art of Computer Programming: (1) Fundamental Algorithms, (2) Seminumerical Algorithms, (3) Sorting and Searching. Addison/Wesley, third edition, 1997/98. 3 volumes.

Docentes:

José Manuel Valença e Manuel Bernardo Barbosa





8503N2 - Analysis

Regime: S1


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 84
Créditos: 7
Métodos de Ensino:

 Theoretical and practical classes.

Programa:

Topological structure of Rn. Sucessions in Rn. Real functions of several variables. Multiple Integration.

Métodos de Avaliação:

Individual resolution of exercises  and  written examination.

Pré-requisitos:

One variable basic calculus.

Resultados de Aprendizagem:

By the end of the course the student should be able to:

- recognise topological notions of Rn;

- formulate simple arguments and conclusions about continuity and differenciability of several variables functions;

- apply, in simple cases, the theorems of inverse function and implicit function;

- identify and classify critical points;

- solve problems about multiple integration.

Bibliografia:

- “Introdução ao análise em Rm” J. Campos Ferreira, Dep. Mat. IST

- “Curso de análise, Vol II” E.L. Lima, Projecto Euclides

- “Cálculo diferencial e Integral”, N. Piskounov, Editorial Lopes da Silva

Docentes: Lucia Fernandez Suarez






8503N3 - Computer Communications

Regime: S1


Tipo: Compulsory
Língua de Instrução: Portuguese
Horas/Semana: 56
Créditos: 5
Métodos de Ensino:

2 hours/week of theorectical lectures; 2 hours/week of practical work.

Programa:

Introduction to data communications. Elements of protocols.

Data link control. The HDLC protocol.

Local area networks. The TCP/IP Protocol Stack. Internetworking of TCP/IP networks.

Métodos de Avaliação:

Written examination (70%); Experimental component (25%); Development project (15%).

Pré-requisitos:

None.


Resultados de Aprendizagem:

The students should be able t


(i) discuss the fundamental concepts of data communications, communication protocols, protocol stacks and corresponding architectures, including common elements of communication protocols;
(ii) analyse and instantiate these concepts, focusing on the data link layer;
(iii) acquire a general background on local area networks (wired and wireless) and their operation;
(iv) explain in detail the main TCP/IP protocols and internetworking principles.

Bibliografia:

MSL, Comunicações por Computador, Notas de apoio às aulas teóricas, Grupo de

Comunicações por Computador, DI/UM, 2007.

J. Kurose and K. Rose, Computer Networking: A Top Down Approach Featuring The

Internet, Addison-Wesley, ISBN: 0-321-49770-8, 4th Edition 2008;

W.Stallings, Data and Computer Communications, 8ª Edição, Prentice Hall, ISBN: 0-

13-2433109, 2007.

A.S.Tanenbaum, Computer Networks, 4ª Edição, Prentice Hall, ISBN: 0130661023,

2003.


E.Monteiro e F.Boavida, Engenharia de Redes Informáticas, 3ª Edição, FCA, 2000;
Docentes:
Maria Solange Pires Ferreira Rito Lima




Download 199.37 Kb.

Share with your friends:
1   2   3   4




The database is protected by copyright ©ininet.org 2024
send message

    Main page