Revisão Bibliográfica: Autômatos Celulares



Download 445.54 Kb.
Page2/18
Date06.08.2017
Size445.54 Kb.
#27464
1   2   3   4   5   6   7   8   9   ...   18

Referências em Papel:


  • Codd E.F. (1968), Cellular Automata, Academic Press, New York

  • Dewdney A.K. (August 1989), A Cellular Universe of Debris, Droplets, Defects and Demons, Scientific American, 261:2, 102-105


Internet:

  • life.csu.edu.au/complex/tutorials/tutorial1.html

  • www.ifs.tuwien.ac.at/~aschatt/info/ca/ca.html



Fonte: http://life.csu.edu.au/complex/tutorials/tutorial1.html


  • Bossomaier, T.J. & Green, D.G. (1998).

Patterns in the Sand - Computers, Complexity and Life. Allen and Unwin.

  • Coveney, P. and Highfield, R. (1995).

Frontiers of Complexity. Faber and Faber, Chapter 6.

Fonte: http://psoup.math.wisc.edu/mcell/ca_links.html


  • Cellular Automata - Online introduction to Cellular Automata, CA FAQ, description of the 1D CA.

  • Cellular Automata - Introduction to 1D and 2D CA by Andreas Ehrencrona. Java applets.

  • Cellular Automata - Good source of information on history and properties of 1D and 2D Cellular Automata.

  • Cellular Automata and Complex Systems - Tomoaki Suzudo's Home Page concentrating on the 5-neighbour (von Neumann) neighbourhood. Java applets.

  • Cellular Automata Tutorial - an essay by Alexander Schatten.

Voltar

Referências mais Elaboradas :


Linear Algebra and its Applications


Vol: 322, Issue: 1-3, January 1, 2001 pp. 193-206

Title: Linear cellular automata with boundary conditions


Authors: Chin, William1; Cortzen, Barbara; Goldman, Jerrya, 2

Affiliations: a. Department of Mathematical Sciences, DePaul University, Chicago, IL 60614, USA

Keywords: Linear cellular automata; Boundary conditions; State transition diagram

Abstract:

The main results of the paper concern graphs of linear cellular automata with boundary conditions. We show that the connected components of such graphs are direct sums of trees and cycles, and we provide a complete characterization of the trees, as well as enumerate the cycles of various lengths. Our work generalizes and clarifies results obtained previously in special cases.

Publisher: Elsevier Science

Language of Publication: English

Item Identifier: S0024-3795(00)00227-5

Publication Type: Article

ISSN: 0024-3795

Citations: 1.R. Barua, Additive cellular automata and matrices over finite fields, Indian

Statistical Institute Technical Report No. 17/91, 1991

2.C. Curtis, I. Reiner, Methods of Representation Theory, vol. I, Wiley, New

York, 1981

3.Pu-hua Guan, Yu He, Exact results for deterministic cellular automata

with additive rules, J. Statist. Phys. 43 (3/4) (1986)

4.T. Hungerford, Algebra. Holt, Rinehart & Winston, New York, 1974

5.Jen, E., "Linear cellular automata and recurring sequences in finite fields"

Comm. Math. Phys. 1998 pp. 13-28

6.LeBruyn, L., "Algebraic properties of linear cellular automata" Linear

Algebra Appl. 1991 pp. 217-234

7.Martin, O., "Algebraic properties of cellular automata" Comm. Math.

Phys. 1984 pp. 219-258

8.K. Sutner, Sigma-automata and Chebyshev polynomials, Theoret.

Comput. Sci. 230 (1–2) (2000) 49–73

9.K. Sutner, Linear cellular automata and DeBruijn automata, in: M.

Delorme, J. Mazoyer (Eds.), Cellular Automata: A Parallel Model,

Kluwer, Dordrecht, 1999

10.Sutner, K., "Linear cellular automata and Fischer automata" Parallel

Comput. 1997 pp. 1613-1634 Bibliographic Page Full Text

11.J. Von Neumann, in: A.W. Burks (Ed.), Theory of Self-reproducing

Automata, University of Illinois Press, Urbana, IL, 1966

12.Wolfram, S., "Statistical mechanics of cellular automata" Rev. Modern

Phys. 1983 pp. 601-644




Theoretical Computer Science


Vol: 259, Issue: 1-2, May 28, 2001

pp. 271-285


Title: Kolmogorov complexity and cellular automata classification


Authors: Dubacq, J.-C.a; Durand, B.a; Formenti, E.a

Affiliations: a. Lab. de Inform. du Parallelisme, Ecole Normale Sup. de Lyon, 46 Alleé

d'Italie, F-69364, Lyon Cedex 07, France

Abstract:

We present a new approach to cellular automata (CA) classification based on algorithmic complexity. We construct a parameter k which is based only on the transition table of CA and measures the “randomness” of evolutions; k is better, in a certain sense, than any other parameter recursively definable on CA tables. We investigate the relations between the classical topological approach and ours. Our parameter is compared with Langton's l parameter: k turns out to be theoretically better and also agrees with some practical evidences reported in literature. Finally, we propose a protocol to approximate k and make experiments on CA dynamical behavior.

Publisher: Elsevier Science

Language of Publication: English

Item Identifier: S0304-3975(00)00012-8

Publication Type: Article

ISSN: 0304-3975

Citations: 1.Banks, J., "On Devaney's definition of chaos" Amer. Math. Monthly 1992

pp. 332-334

2.Berlekamp, E.R., Winning Ways for Your Mathematical Plays 1982

3.Blanchard, F., "Topological and measure-theoretic properties of

one-dimensional cellular automata" Physica D 1997 pp. 86-99

Bibliographic Page Full Text

4.Braga, G., "Pattern growth in elementary cellular automata" Theoret.

Comput. Sci. 1995 pp. 1-26

5.Calude, C., Information and Randomness 1994

6.Cattaneo, G., Mathematical Foundations of Computer Science

(MFCS’97), Lecture Notes in Computer Science 1997

7.Crutchfield, J.P., "Revisting the edge of chaosevolving cellular automata

to perform computations" Comput. Systems 1993 pp. 89-130

8.Culik, K., "On the limit set of cellular automata" SIAM J. Comput. 1989

pp. 167-175

9.Davaney, R.L., Introduction to Chaotic Dynamical Systems 1989

10.B. Durand, Zs. Ro´ka, The game of life: universality revisited, in: J.

Mazoyer, M. Delorme (Ed.), Cellular Automata: A Parallel Model, Kluwer,

Dordrecht, 1999.

11.H. Gutowitz, C. Langton, Mean field theory and the edge of chaos, in

proc. 3rd Europ. Conf. on Art. Life, 1995.

12.Hedlund, G.A., "Endomorphism and automorphism of the shift dynamical

systems" Math. Systems Theory 1969 pp. 320-375

13.Hurley, M., "Attractors in cellular automata" Ergodic. Theory Dynamical

Systems 1990 pp. 131-140

14.Kari, J., "Rice's theorem for the limit set of cellular automata" Theoret.

Comput. Sci. 1994 pp. 229-254

15.Knudsen, C., "Chaos without nonperiodicity" Amer. Math. Monthly 1994

pp. 563-565

16.Kurka, P., "Languages, equicontinuity and attractors in cellular

automata" Ergodic Theory Dynamical Systems 1997 pp. 417-433

17.Langton, C., "Computation at the edge of chaosphase transitions and

emergent computation" Physica D 1990 pp. 12-37

18.Li, M., An Introductioin to Kolmogorov Complexity and its Applications

1997

19.Martin-Löf, P., "The definition of random sequences" Inform. and Control



1966 pp. 602-619

20.Martin-Löf, P., "Complexity oscillations in infinite binary sequences" Z.

Wahrsch. Ver. Geb. 1971 pp. 223-230

21.Uspensky, V.A., "Can individual sequences of zeros and ones be

random?" Russian Math. Surveys 1990 pp. 121-189

22.Uspensky, V.A., "Relations between varieties of Kolmogorov

complexities" Math. Systems Theory 1996 pp. 270-291

23.Wolfram, S., "Computation theory of cellular automata" Comm. Math.

Phys. 1984 pp. 15-57



Download 445.54 Kb.

Share with your friends:
1   2   3   4   5   6   7   8   9   ...   18




The database is protected by copyright ©ininet.org 2024
send message

    Main page