Standards of Excellence


Mathematics | High School—Functions



Download 200.58 Kb.
Page4/7
Date28.01.2017
Size200.58 Kb.
#10351
1   2   3   4   5   6   7

Mathematics | High School—Functions

Functions describe situations where one quantity determines another. For example, the return on $10,000 invested at an annualized percentage rate of 4.25% is a function of the length of time the money is invested. Because we continually make theories about dependencies between quantities in nature and society, functions are important tools in the construction of mathematical models.


In school mathematics, functions usually have numerical inputs and outputs and are often defined by an algebraic expression. For example, the time in hours it takes for a car to drive 100 miles is a function of the car’s speed in miles per hour, v; the rule T(v) = 100/v expresses this relationship algebraically and defines a function whose name is T.
The set of inputs to a function is called its domain. We often infer the domain to be all inputs for which the expression defining a function has a value, or for which the function makes sense in a given context. A function can be described in various ways, such as by a graph (e.g., the trace of a seismograph); by a verbal rule, as in, “I’ll give you a state, you give me the capital city;” by an algebraic expression like f(x) = a + bx; or by a recursive rule. The graph of a function is often a useful way of visualizing the relationship of the function models, and manipulating a mathematical expression for a function can throw light on the function’s properties.
Functions presented as expressions can model many important phenomena. Two important families of functions characterized by laws of growth are linear functions, which grow at a constant rate, and exponential functions, which grow at a constant percent rate. Linear functions with a constant term of zero describe proportional relationships.
A graphing utility or a computer algebra system can be used to experiment with properties of these functions and their graphs and to build computational models of functions, including recursively defined functions.
Connections to Expressions, Equations, and Coordinates:

Determining an output value for a particular input involves evaluating an expression; finding inputs that yield a given output involves solving an equation. Questions about when two functions have the same value for the same input lead to equations, whose solutions can be visualized from the intersection of their graphs.


Interpreting Functions F.IF
Understand the concept of a function and use function notation
MGSE9-12.F.IF.1 Understand that a function from one set (the input, called the domain) to another set (the output, called the range) assigns to each element of the domain exactly one element of the range, i.e. each input value maps to exactly one output value. If f is a function, and x is the input (an element of the domain), then f(x) is the output (an element of the range). Graphically, the graph is y = f(x).
MGSE9-12.F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
MGSE9-12.F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. (Generally, the scope of high school math defines this subset as the set of natural numbers 1, 2, 3, 4, …) By graphing or calculating terms, students should be able to show how the recursive sequence a1 = 7, an = an – 1 + 2; the sequence sn = 2(n – 1) + 7; and the function f(x) = 2x + 5 (when x is a natural number) all define the same sequence.
Interpret functions that arise in applications in terms of the context
MGSE9-12.F.IF.4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; interval where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

MGSE9-12.F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
MGSE9-12.F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
Analyze functions using different representations
MGSE9-12.F.IF.7 Graph functions expressed algebraically and show key features of the graph both by hand and by using technology.
MGSE9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima (as determined by the function or by context).
MGSE9-12.F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
MGSE9-12.F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
MGSE9-12.F.IF.8a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. For example, compare and contrast quadratic functions in standard, vertex, and intercept forms.
MGSE9-12.F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one function and an algebraic expression for another, say which has the larger maximum.
Building Functions F-BF
Build a function that models a relationship between two quantities
MGSE9-12.F.BF.1 Write a function that describes a relationship between two quantities.
MGSE9-12.F.BF.1a Determine an explicit expression and the recursive process (steps for calculation) from context. For example, if Jimmy starts out with $15 and earns $2 a day, the explicit expression “2x+15” can be described recursively (either in writing or verbally) as “to find out how much money Jimmy will have tomorrow, you add $2 to his total today.”

MGSE9-12.F.BF.2 Write arithmetic and geometric sequences both recursively and explicitly, use them to model situations, and translate between the two forms. Connect arithmetic sequences to linear functions and geometric sequences to exponential functions.
Build new functions from existing functions
MGSE9-12.F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Linear, Quadratic, and Exponential Models F.LE
Construct and compare linear, quadratic, and exponential models and solve problems
MGSE9-12.F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.
MGSE9-12.F.LE.1a Show that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals. (This can be shown by algebraic proof, with a table showing differences, or by calculating average rates of change over equal intervals).
MGSE9-12.F.LE.1b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
MGSE9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
MGSE9-12.F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
MGSE9-12.F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
Interpret expressions for functions in terms of the situation they model
MGSE9-12.F.LE.5 Interpret the parameters in a linear (f(x) = mx + b) and exponential

(f(x) = a dx) function in terms of a context. (In the functions above, “m” and “b” are the parameters of the linear function, and “a” and “d” are the parameters of the exponential function.) In context, students should describe what these parameters mean in terms of change and starting value.

Mathematics | High School – Geometry


An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts—interpreting a schematic drawing, estimating the amount of wood needed to frame a sloping roof, rendering computer graphics, or designing a sewing pattern for the most efficient use of material.
Although there are many types of geometry, school mathematics is devoted primarily to plane Euclidean geometry, studied both synthetically (without coordinates) and analytically (with coordinates). Euclidean geometry is characterized most importantly by the Parallel Postulate that states that through a point not on a given line there is exactly one parallel line. (Spherical geometry, in contrast, has no parallel lines.) During high school, students begin to formalize their geometry experiences from elementary and middle school, using more precise definitions and developing careful proofs. Later in college some students develop Euclidean and other geometries carefully from a small set of axioms.
The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation. Fundamental are the rigid motions: translations, rotations, reflections, and combinations of these, all of which are here assumed to preserve distance and angles (and therefore shape in general). Reflections and rotations each explain a particular type of symmetry, and the symmetries of an object offer insight into its attributes—as when the reflective symmetry of an isosceles triangle assures that its base angles are congruent.
In the approach taken here, two geometric figures are defined to be congruent if there is a sequence of rigid motions that carries one onto the other. This is the principle of superposition. For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. During the middle grades, through experiences drawing triangles from given conditions, students notice ways to specify enough measures in a triangle to ensure that all triangles drawn with those measures are congruent. Once these triangle congruence criteria (ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems about triangles, quadrilaterals, and other geometric figures.
Similarity transformations (rigid motions followed by dilations) define similarity in the same way that rigid motions define congruence, thereby formalizing the similarity ideas of "same shape" and "scale factor" developed in the middle grades. These transformations lead to the criterion for triangle similarity that two pairs of corresponding angles are congruent.
The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the Pythagorean Theorem, are fundamental in many real-world and theoretical situations. The Pythagorean Theorem is generalized to non-right triangles by the Law of Cosines. Together, the Laws of Sines and Cosines embody the triangle congruence criteria for the cases where three pieces of information suffice to completely solve a triangle. Furthermore, these laws yield two possible solutions in the ambiguous case, illustrating that Side-Side-Angle is not a congruence criterion.
Connections to Equations: The correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a tool for doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof.
Congruence G.CO
Experiment with transformations in the plane
MGSE9-12.G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
MGSE9-12.G.CO.2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
MGSE9-12.G.CO.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
MGSE9-12.G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
MGSE9-12.G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Understand congruence in terms of rigid motions
MGSE9-12.G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
MGSE9-12.G.CO.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
MGSE9-12.G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. (Extend to include HL and AAS.)
Prove geometric theorems
MGSE9-12.G.CO.9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
MGSE9-12.G.CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 degrees; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

MGSE9-12.G.CO.11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Make geometric constructions
MGSE9-12.G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
MGSE9-12.G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon, each inscribed in a circle.
Similarity, Right Triangles, and Trigonometry G.SRT
Understand similarity in terms of similarity transformations
MGSE9-12.G.SRT.1 Verify experimentally the properties of dilations given by a center and a scale factor.


  1. The dilation of a line not passing through the center of the dilation results in a parallel line and leaves a line passing through the center unchanged.

  2. The dilation of a line segment is longer or shorter according to the ratio given by the scale factor.


MGSE9-12.G.SRT.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain, using similarity transformations, the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
MGSE9-12.G.SRT.3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
Prove theorems involving similarity
MGSE9-12.G.SRT.4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, (and its converse); the Pythagorean Theorem using triangle similarity.
MGSE9-12.G.SRT.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Define trigonometric ratios and solve problems involving right triangles
MGSE9-12.G.SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

MGSE9-12.G.SRT.7 Explain and use the relationship between the sine and cosine of complementary angles.
MGSE9-12.G.SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.


Download 200.58 Kb.

Share with your friends:
1   2   3   4   5   6   7




The database is protected by copyright ©ininet.org 2024
send message

    Main page