domesticated animals and cultivated plants. A few examples will
therefore be adduced showing that such constitutional variation does
occur.
Among animals the cases are not numerous, because no systematic attempt
has been made to select varieties for this special quality. It has,
however, been observed that, though no European dogs thrive well in
India, the Newfoundland dog, originating from a severe climate, can
hardly be kept alive. A better case, perhaps, is furnished by merino
sheep, which, when imported directly from England, do not thrive, while
those which have been bred in the intermediate climate of the Cape of
Good Hope do much better. When geese were first introduced into Bogota,
they laid few eggs at long intervals, and few of the young survived. By
degrees, however, the fecundity improved, and in about twenty years
became equal to what it is in Europe. According to Garcilaso, when fowls
were first introduced into Peru they were not fertile, whereas now they
are as much so as in Europe.
Plants furnish much more important evidence. Our nurserymen distinguish
in their catalogues varieties of fruit-trees which are more or less
hardy, and this is especially the case in America, where certain
varieties only will stand the severe climate of Canada. There is one
variety of pear, the Forelle, which both in England and France withstood
frosts that killed the flowers and buds of all other kinds of pears.
Wheat, which is grown over so large a portion of the world, has become
adapted to special climates. Wheat imported from India and sown in good
wheat soil in England produced the most meagre ears; while wheat taken
from France to the West Indian Islands produced either wholly barren
spikes or spikes furnished with two or three miserable seeds, while West
Indian seed by its side yielded an enormous harvest. The orange was very
tender when first introduced into Italy, and continued so as long as it
was propagated by grafts, but when trees were raised from seed many of
these were found to be hardier, and the orange is now perfectly
acclimatised in Italy. Sweet-peas (Lathyrus odoratus) imported from
England to the Calcutta Botanic Gardens produced few blossoms and no
seed; those from France flowered a little better, but still produced no
seed, but plants raised from seed brought from Darjeeling in the
Himalayas, but originally derived from England, flower and seed
profusely in Calcutta.[36]
An observation by Mr. Darwin himself is perhaps even more instructive.
He says: "On 24th May 1864 there was a severe frost in Kent, and two
rows of scarlet runners (Phaseolus multiflorus) in my garden, containing
390 plants of the same age and equally exposed, were all blackened and
killed except about a dozen plants. In an adjoining row of Fulmer's
dwarf bean (Phaseolus vulgaris) one single plant escaped. A still more
severe frost occurred four days afterwards, and of the dozen plants
which had previously escaped only three survived; these were not taller
or more vigorous than the other young plants, but they escaped
completely, with not even the tips of their leaves browned. It was
impossible to behold these three plants, with their blackened, withered,
and dead brethren all around them, and not see at a glance that they
differed widely in their constitutional power of resisting frost."
The preceding sketch of the variation that occurs among domestic animals
and cultivated plants shows how wide it is in range and how great in
amount; and we have good reason to believe that similar variation
extends to all organised beings. In the class of fishes, for example, we
have one kind which has been long domesticated in the East, the gold
and silver carps; and these present great variation, not only of colour
but in the form and structure of the fins and other external organs. In
like manner, the only domesticated insects, hive bees and silkworm
moths, present numbers of remarkable varieties which have been produced
by the selection of chance variations just as in the case of plants and
the higher animals.
_Circumstances favourable to Selection by Man._
It may be supposed, that the systematic selection which has been
employed for the purpose of improving the races of animals or plants
useful to man is of comparatively recent origin, though some of the
different races are known to have been in existence in very early times.
But Mr. Darwin has pointed out, that unconscious selection must have
begun to produce an effect as soon as plants were cultivated or animals
domesticated by man. It would have been very soon observed that animals
and plants produced their like, that seed of early wheat produced early
wheat, that the offspring of very swift dogs were also swift, and as
every one would try to have a good rather than a bad sort this would
necessarily lead to the slow but steady improvement of all useful plants
and animals subject to man's care. Soon there would arise distinct
breeds, owing to the varying uses to which the animals and plants were
put. Dogs would be wanted chiefly to hunt one kind of game in one part
of the country and another kind elsewhere; for one purpose scent would
be more important, for another swiftness, for another strength and
courage, for yet another watchfulness and intelligence, and this would
soon lead to the formation of very distinct races. In the case of
vegetables and fruits, different varieties would be found to succeed
best in certain soils and climates; some might be preferred on account
of the quantity of food they produced, others for their sweetness and
tenderness, while others might be more useful on account of their
ripening at a particular season, and thus again distinct varieties would
be established. An instance of unconscious selection leading to distinct
results in modern times is afforded by two flocks of Leicester sheep
which both originated from the same stock, and were then bred pure for
upwards of fifty years by two gentlemen, Mr. Buckley and Mr. Burgess.
Mr. Youatt, one of the greatest authorities on breeding domestic
animals, says: "There is not a suspicion existing in the mind of any one
at all acquainted with the subject that the owner of either of them has
deviated in any one instance from the pure blood of Mr. Bakewell's
original flock, and yet the difference between the sheep possessed by
these two gentlemen is so great that they have the appearance of being
quite different varieties." In this case there was no desire to deviate
from the original breed, and the difference must have arisen from some
slight difference of taste or judgment in selecting, each year, the
parents for the next year's stock, combined perhaps with some direct
effect of the slight differences of climate and soil on the two farms.
Most of our domesticated animals and cultivated plants have come to us
from the earliest seats of civilisation in Western Asia or Egypt, and
have therefore been the subjects of human care and selection for some
thousands of years, the result being that, in many cases, we do not know
the wild stock from which they originally sprang. The horse, the camel,
and the common bull and cow are nowhere found in a wild state, and they
have all been domesticated from remote antiquity. The original of the
domestic fowl is still wild in India and the Malay Islands, and it was
domesticated in India and China before 1400 B.C. It was introduced into
Europe about 600 B.C. Several distinct breeds were known to the Romans
about the commencement of the Christian era, and they have since spread
all over the civilised world and been subjected to a vast amount of
conscious and unconscious selection, to many varieties of climate and to
differences of food; the result being seen in the wonderful diversity of
breeds which differ quite as remarkably as do the different races of
pigeons already described.
In the vegetable kingdom, most of the cereals--wheat, barley, etc.--are
unknown as truly wild plants; and the same is the case with many
vegetables, for De Candolle states that out of 157 useful cultivated
plants thirty-two are quite unknown in a wild state, and that forty more
are of doubtful origin. It is not improbable that most of these do exist
wild, but they have been so profoundly changed by thousands of years of
cultivation as to be quite unrecognisable. The peach is unknown in a
wild state, unless it is derived from the common almond, on which point
there is much difference of opinion among botanists and horticulturists.
The immense antiquity of most of our cultivated plants sufficiently
explains the apparent absence of such useful productions in Australia
and the Cape of Good Hope, notwithstanding that they both possess an
exceedingly rich and varied flora. These countries having been, until a
comparatively recent period, inhabited only by uncivilised men, neither
cultivation nor selection has been carried on for a sufficiently long
time. In North America, however, where there was evidently a very
ancient if low form of civilisation, as indicated by the remarkable
mounds, earthworks, and other prehistoric remains, maize was cultivated,
though it was probably derived from Peru; and the ancient civilisation
of that country and of Mexico has given rise to no fewer than
thirty-three useful cultivated plants.
_Conditions favourable to the production of Variations._
In order that plants and animals may be improved and modified to any
considerable extent, it is of course essential that suitable variations
should occur with tolerable frequency. There seem to be three conditions
which are especially favourable to the production of variations: (1)
That the particular species or variety should be kept in very large
numbers; (2) that it should be spread over a wide area and thus
subjected to a considerable diversity of physical conditions; and (3)
that it should be occasionally crossed with some distinct but closely
allied race. The first of these conditions is perhaps the most
important, the chance of variations of any particular kind being
increased in proportion to the quantity of the original stock and of its
annual offspring. It has been remarked that only those breeders who keep
large flocks can effect much improvement; and it is for the same reason
that pigeons and fowls, which can be so easily and rapidly increased,
and which have been kept in such large numbers by so great a number of
persons, have produced such strange and numerous varieties. In like
manner, nurserymen who grow fruit and flowers in large quantities have a
great advantage over private amateurs in the production of new
varieties.
Although I believe, for reasons which will be given further on, that
some amount of variability is a constant and necessary property of all
organisms, yet there appears to be good evidence to show that changed
conditions of life tend to increase it, both by a direct action on the
organisation and by indirectly affecting the reproductive system. Hence
the extension of civilisation, by favouring domestication under altered
conditions, facilitates the process of modification. Yet this change
does not seem to be an essential condition, for nowhere has the
production of extreme varieties of plants and flowers been carried
farther than in Japan, where careful selection continued for many
generations must have been the chief factor. The effect of occasional
crosses often results in a great amount of variation, but it also leads
to instability of character, and is therefore very little employed in
the production of fixed and well-marked races. For this purpose, in
fact, it has to be carefully avoided, as it is only by isolation and
pure breeding that any specially desired qualities can be increased by
selection. It is for this reason that among savage peoples, whose
animals run half wild, little improvement takes place; and the
difficulty of isolation also explains why distinct and pure breeds of
cats are so rarely met with. The wide distribution of useful animals and
plants from a very remote epoch has, no doubt, been a powerful cause of
modification, because the particular breed first introduced into each
country has often been kept pure for many years, and has also been
subjected to slight differences of conditions. It will also usually have
been selected for a somewhat different purpose in each locality, and
thus very distinct races would soon originate.
The important physiological effects of crossing breeds or strains, and
the part this plays in the economy of nature, will be explained in a
future chapter.
_Concluding Remarks._
The examples of variation now adduced--and these might have been almost
indefinitely increased--will suffice to show that there is hardly an
organ or a quality in plants or animals which has not been observed to
vary; and further, that whenever any of these variations have been
useful to man he has been able to increase them to a marvellous extent
by the simple process of always preserving the best varieties to breed
from. Along with these larger variations others of smaller amount
occasionally appear, sometimes in external, sometimes in internal
characters, the very bones of the skeleton often changing slightly in
form, size, or number; but as these secondary characters have been of no
use to man, and have not been specially selected by him, they have,
usually, not been developed to any great amount except when they have
been closely dependent on those external characters which he has largely
modified.
As man has considered only utility to himself, or the satisfaction of
his love of beauty, of novelty, or merely of something strange or
amusing, the variations he has thus produced have something of the
character of monstrosities. Not only are they often of no use to the
animals or plants themselves, but they are not unfrequently injurious to
them. In the Tumbler pigeons, for instance, the habit of tumbling is
sometimes so excessive as to injure or kill the bird; and many of our
highly-bred animals have such delicate constitutions that they are very
liable to disease, while their extreme peculiarities of form or
structure would often render them quite unfit to live in a wild state.
In plants, many of our double flowers, and some fruits, have lost the
power of producing seed, and the race can thus be continued only by
means of cuttings or grafts. This peculiar character of domestic
productions distinguishes them broadly from wild species and varieties,
which, as will be seen by and by, are necessarily adapted in every part
of their organisation to the conditions under which they have to live.
Their importance for our present inquiry depends on their demonstrating
the occurrence of incessant slight variations in all parts of an
organism, with the transmission to the offspring of the special
characteristics of the parents; and also, that all such slight
variations are capable of being accumulated by selection till they
present very large and important divergencies from the ancestral stock.
We thus see, that the evidence as to variation afforded by animals and
plants under domestication strikingly accords with that which we have
proved to exist in a state of nature. And it is not at all surprising
that it should be so, since all the species were in a state of nature
when first domesticated or cultivated by man, and whatever variations
occur must be due to purely natural causes. Moreover, on comparing the
variations which occur in any one generation of domesticated animals
with those which we know to occur in wild animals, we find no evidence
of greater individual variation in the former than in the latter. The
results of man's selection are more striking to us because we have
always considered the varieties of each domestic animal to be
essentially identical, while those which we observe in a wild state are
held to be essentially diverse. The greyhound and the spaniel seem
wonderful, as varieties of one animal produced by man's selection; while
we think little of the diversities of the fox and the wolf, or the horse
and the zebra, because we have been accustomed to look upon them as
radically distinct animals, not as the results of nature's selection of
the varieties of a common ancestor.
FOOTNOTES:
[Footnote 31: Darwin, _Animals and Plants under Domestication_, vol. i.
p. 322.]
[Footnote 32: These facts are taken from Darwin's _Domesticated Animals
and Cultivated Plants_, vol. i. pp. 359, 360, 392-401; vol. ii. pp. 231,
275, 330.]
[Footnote 33: See Darwin's _Animals and Plants under Domestication_,
vol. i. pp. 40-42.]
[Footnote 34: Mr. Brent in _Journal of Horticulture_, 1861, p. 76;
quoted by Darwin, _Animals and Plants under Domestication_, vol. i. p.
151.]
[Footnote 35: This account of domestic pigeons is greatly condensed from
Mr. Darwin's work already referred to.]
[Footnote 36: _Animals and Plants under Domestication_, vol. ii. pp.
307-311.]
CHAPTER V
NATURAL SELECTION BY VARIATION AND SURVIVAL OF THE FITTEST
Effect of struggle for existence under unchanged conditions--The
effect under change of conditions--Divergence of character--In
insects--In birds--In mammalia--Divergence leads to a maximum of
life in each area--Closely allied species inhabit distinct
areas--Adaptation to conditions at various periods of life--The
continued existence of low forms of life--Extinction of low
types among the higher animals--Circumstances favourable to the
origin of new species--Probable origin of the dippers--The
importance of isolation--On the advance of organisation by
natural selection--Summary of the first five chapters.
In the preceding chapters we have accumulated a body of facts and
arguments which will enable us now to deal with the very core of our
subject--the formation of species by means of natural selection. We have
seen how tremendous is the struggle for existence always going on in
nature owing to the great powers of increase of all organisms; we have
ascertained the fact of variability extending to every part and organ,
each of which varies simultaneously and for the most part independently;
and we have seen that this variability is both large in its amount in
proportion to the size of each part, and usually affects a considerable
proportion of the individuals in the large and dominant species. And,
lastly, we have seen how similar variations, occurring in cultivated
plants and domestic animals, are capable of being perpetuated and
accumulated by artificial selection, till they have resulted in all the
wonderful varieties of our fruits, flowers, and vegetables, our domestic
animals and household pets, many of which differ from each other far
more in external characters, habits, and instincts than do species in a
state of nature. We have now to inquire whether there is any analogous
process in nature, by which wild animals and plants can be permanently
modified and new races or new species produced.
_Effect of Struggle for Existence under Unchanged Conditions._
Let us first consider what will be the effect of the struggle for
existence upon the animals and plants which we see around us, under
conditions which do not perceptibly vary from year to year or from
century to century. We have seen that every species is exposed to
numerous and varied dangers throughout its entire existence, and that it
is only by means of the exact adaptation of its organisation--including
its instincts and habits--to its surroundings that it is enabled to live
till it produces offspring which may take its place when it ceases to
exist. We have seen also that, of the whole annual increase only a very
small fraction survives; and though the survival in individual cases may
sometimes be due rather to accident than to any real superiority, yet we
cannot doubt that, in the long run, those survive which are best fitted
by their perfect organisation to escape the dangers that surround them.
This "survival of the fittest" is what Darwin termed "natural
selection," because it leads to the same results in nature as are
produced by man's selection among domestic animals and cultivated
plants. Its primary effect will, clearly, be to keep each species in the
most perfect health and vigour, with every part of its organisation in
full harmony with the conditions of its existence. It prevents any
possible deterioration in the organic world, and produces that
appearance of exuberant life and enjoyment, of health and beauty, that
affords us so much pleasure, and which might lead a superficial observer
to suppose that peace and quietude reigned throughout nature.
_The Effect under changed Conditions._
But the very same process which, so long as conditions remain
substantially the same, secures the continuance of each species of
animal or plant in its full perfection, will usually, under changed
conditions, bring about whatever change of structure or habits may be
necessitated by them. The changed conditions to which we refer are such
as we know have occurred throughout all geological time and in every
part of the world. Land and water have been continually shifting their
positions; some regions are undergoing subsidence with diminution of
area, others elevation with extension of area; dry land has been
converted into marshes, while marshes have been drained or have even
been elevated into plateaux. Climate too has changed again and again,
either through the elevation of mountains in high latitudes leading to
the accumulation of snow and ice, or by a change in the direction of
winds and ocean currents produced by the subsidence or elevation of
lands which connected continents and divided oceans. Again, along with
all these changes have come not less important changes in the
distribution of species. Vegetation has been greatly modified by changes
of climate and of altitude; while every union of lands before separated
has led to extensive migrations of animals into new countries,
disturbing the balance that before existed among its forms of life,
leading to the extermination of some species and the increase of others.
Share with your friends: |