Macmillan's _Magazine_, and more fully in my volume on _Tropical
Nature_. Subsequently Mrs. Barber gave a few examples under the head of
"Indicative or Banner Colours," but she applied it to the distinctive
colours of the males of birds, which I explain on another principle,
though this may assist.]
[Footnote 87: Quoted by Darwin in _Descent of Man_, p. 317.]
[Footnote 88: In the _American Naturalist_ of March 1888, Mr. J.E. Todd
has an article on "Directive Coloration in Animals," in which he
recognises many of the cases here referred to, and suggests a few
others, though I think he includes many forms of coloration--as
"paleness of belly and inner side of legs"--which do not belong to this
class.]
[Footnote 89: For numerous examples of this protective colouring of
marine animals see Moseley's _Voyage of the Challenger_, and Dr. E.S.
Morse in _Proc. of Bost. Soc. of Nat. Hist._, vol. xiv. 1871.]
[Footnote 90: See _Origin of Species_, p. 107.]
[Footnote 91: The "Geographical Variation of North American Squirrels,"
_Proc. Bost. Soc. of Nat. Hist._, 1874, p. 284; and _Mammals and Winter
Birds of Florida_, pp. 233-241.]
CHAPTER IX
WARNING COLORATION AND MIMICRY
The skunk as an example of warning coloration--Warning colours
among insects--Butterflies--Caterpillars--Mimicry--How mimicry
has been produced--Heliconidae--Perfection of the
imitation--Other cases of mimicry among Lepidoptera--Mimicry
among protected groups--Its explanation--Extension of the
principle--Mimicry in other orders of insects--Mimicry among the
vertebrata--Snakes--The rattlesnake and the cobra--Mimicry among
birds--Objections to the theory of mimicry--Concluding remarks
on warning colours and mimicry.
We have now to deal with a class of colours which are the very opposite
of those we have hitherto considered, since, instead of serving to
conceal the animals that possess them or as recognition marks to their
associates, they are developed for the express purpose of rendering the
species conspicuous. The reason of this is that the animals in question
are either the possessors of some deadly weapons, as stings or poison
fangs, or they are uneatable, and are thus so disagreeable to the usual
enemies of their kind that they are never attacked when their peculiar
powers or properties are known. It is, therefore, important that they
should not be mistaken for defenceless or eatable species of the same
class or order, since in that case they might suffer injury, or even
death, before their enemies discovered the danger or the uselessness of
the attack. They require some signal or danger-flag which shall serve as
a warning to would-be enemies not to attack them, and they have usually
obtained this in the form of conspicuous or brilliant coloration, very
distinct from the protective tints of the defenceless animals allied to
them.
_The Skunk as illustrating Warning Coloration._
While staying a few days, in July 1887, at the Summit Hotel on the
Central Pacific Railway, I strolled out one evening after dinner, and on
the road, not fifty yards from the house, I saw a pretty little white
and black animal with a bushy tail coming towards me. As it came on at a
slow pace and without any fear, although it evidently saw me, I thought
at first that it must be some tame creature, when it suddenly occurred
to me that it was a skunk. It came on till within five or six yards of
me, then quietly climbed over a dwarf wall and disappeared under a small
outhouse, in search of chickens, as the landlord afterwards told me.
This animal possesses, as is well known, a most offensive secretion,
which it has the power of ejecting over its enemies, and which
effectually protects it from attack. The odour of this substance is so
penetrating that it taints, and renders useless, everything it touches,
or in its vicinity. Provisions near it become uneatable, and clothes
saturated with it will retain the smell for several weeks, even though
they are repeatedly washed and dried. A drop of the liquid in the eyes
will cause blindness, and Indians are said not unfrequently to lose
their sight from this cause. Owing to this remarkable power of offence
the skunk is rarely attacked by other animals, and its black and white
fur, and the bushy white tail carried erect when disturbed, form the
danger-signals by which it is easily distinguished in the twilight or
moonlight from unprotected animals. Its consciousness that it needs only
to be seen to be avoided gives it that slowness of motion and
fearlessness of aspect which are, as we shall see, characteristic of
most creatures so protected.
_Warning Colours among Insects._
It is among insects that warning colours are best developed, and most
abundant. We all know how well marked and conspicuous are the colours
and forms of the stinging wasps and bees, no one of which in any part of
the world is known to be protectively coloured like the majority of
defenceless insects. Most of the great tribe of Malacoderms among
beetles are distasteful to insect-eating animals. Our red and black
Telephoridae, commonly called "soldiers and sailors," were found, by Mr.
Jenner Weir, to be refused by small birds. These and the allied
Lampyridae (the fireflies and glow-worms) in Nicaragua, were rejected by
Mr. Belt's tame monkey and by his fowls, though most other insects were
greedily eaten by them. The Coccinellidae or lady-birds are another
uneatable group, and their conspicuous and singularly spotted bodies
serve to distinguish them at a glance from all other beetles.
These uneatable insects are probably more numerous than is supposed,
although we already know immense numbers that are so protected. The most
remarkable are the three families of butterflies--Heliconidae, Danaidae,
and Acraeidae--comprising more than a thousand species, and
characteristic respectively of the three great tropical regions--South
America, Southern Asia, and Africa. All these butterflies have
peculiarities which serve to distinguish them from every other group in
their respective regions. They all have ample but rather weak wings, and
fly slowly; they are always very abundant; and they all have conspicuous
colours or markings, so distinct from those of other families that, in
conjunction with their peculiar outline and mode of flight, they can
usually be recognised at a glance. Other distinctive features are, that
their colours are always nearly the same on the under surface of their
wings as on the upper; they never try to conceal themselves, but rest on
the upper surfaces of leaves or flowers; and, lastly, they all have
juices which exhale a powerful scent, so that when one kills them by
pinching the body, the liquid that exudes stains the fingers yellow, and
leaves an odour that can only be removed by repeated washings.
Now, there is much direct evidence to show that this odour, though not
very offensive to us, is so to most insect-eating creatures. Mr. Bates
observed that, when set out to dry, specimens of Heliconidae were less
subject to the attacks of vermin; while both he and I noticed that they
were not attacked by insect-eating birds or dragonflies, and that their
wings were not found in the forest paths among the numerous wings of
other butterflies whose bodies had been devoured. Mr. Belt once observed
a pair of birds capturing insects for their young; and although the
Heliconidae swarmed in the vicinity, and from their slow flight could
have been easily caught, not one was ever pursued, although other
butterflies did not escape. His tame monkey also, which would greedily
munch up other butterflies, would never eat the Heliconidae. It would
sometimes smell them, but always rolled them up in its hand and then
dropped them.
We have also some corresponding evidence as to the distastefulness of
the Eastern Danaidae. The Hon. Mr. Justice Newton, who assiduously
collected and took notes upon the Lepidoptera of Bombay, informed Mr.
Butler of the British Museum that the large and swift-flying butterfly
Charaxes psaphon, was continually persecuted by the bulbul, so that he
rarely caught a specimen of this species which had not a piece snipped
out of the hind wings. He offered one to a bulbul which he had in a
cage, and it was greedily devoured, whilst it was only by repeated
persecution that he succeeded in inducing the bird to touch a
Danais.[92]
Besides these three families of butterflies, there are certain groups of
the great genus Papilio--the true swallow-tailed butterflies--which have
all the characteristics of uneatable insects. They have a special
coloration, usually red and black (at least in the females), they fly
slowly, they are very abundant, and they possess a peculiar odour
somewhat like that of the Heliconidae. One of these groups is common in
tropical America, another in tropical Asia, and it is curious that,
although not very closely allied, they have each the same red and black
colours, and are very distinct from all the other butterflies of their
respective countries. There is reason to believe also that many of the
brilliantly coloured and weak-flying diurnal moths, like the fine
tropical Agaristidae and burnet-moths, are similarly protected, and that
their conspicuous colours serve as a warning of inedibility. The common
burnet-moth (Anthrocera filipendula) and the equally conspicuous
ragwort-moth (Euchelia jacobeae) have been proved to be distasteful to
insect-eating creatures.
The most interesting and most conclusive example of warning coloration
is, however, furnished by caterpillars, because in this case the facts
have been carefully ascertained experimentally by competent observers.
In the year 1866, when Mr. Darwin was collecting evidence as to the
supposed effect of sexual selection in bringing about the brilliant
coloration of the higher animals, he was struck by the fact that many
caterpillars have brilliant and conspicuous colours, in the production
of which sexual selection could have no place. We have numbers of such
caterpillars in this country, and they are characterised not only by
their gay colours but by not concealing themselves. Such are the mullein
and the gooseberry caterpillars, the larvae of the spurge hawk-moth, of
the buff-tip, and many others. Some of these caterpillars are
wonderfully conspicuous, as in the case of that noticed by Mr. Bates in
South America, which was four inches long, banded across with black and
yellow, and with bright red head, legs, and tail. Hence it caught the
eye of any one who passed by, even at the distance of many yards.
Mr. Darwin asked me to try and suggest some explanation of this
coloration; and, having been recently interested in the question of the
warning coloration of butterflies, I suggested that this was probably a
similar case,--that these conspicuous caterpillars were distasteful to
birds and other insect-eating creatures, and that their bright
non-protective colours and habit of exposing themselves to view, enabled
their enemies to distinguish them at a glance from the edible kinds and
thus learn not to touch them; for it must be remembered that the bodies
of caterpillars while growing are so delicate, that a wound from a
bird's beak would be perhaps as fatal as if they were devoured.[93] At
this time not a single experiment or observation had been made on the
subject, but after I had brought the matter before the Entomological
Society, two gentlemen, who kept birds and other tame animals, undertook
to make experiments with a variety of caterpillars.
Mr. Jenner Weir was the first to experiment with ten species of small
birds in his aviary, and he found that none of them would eat the
following smooth-skinned conspicuous caterpillars--Abraxas
grossulariata, Diloba caeruleocephala, Anthrocera filipendula, and
Cucullia verbasci. He also found that they would not touch any hairy or
spiny larvae, and he was satisfied that it was not the hairs or the
spines, but the unpleasant taste that caused them to be rejected,
because in one case a young smooth larva of a hairy species, and in
another case the pupa of a spiny larva, were equally rejected. On the
other hand, all green or brown caterpillars as well as those that
resemble twigs were greedily devoured.[94]
Mr. A.G. Butler also made experiments with some green lizards (Lacerta
viridis), which greedily ate all kinds of food, including flies of many
kinds, spiders, bees, butterflies, and green caterpillars; but they
would not touch the caterpillar of the gooseberry-moth (Abraxas
grossulariata), or the imago of the burnet-moth (Anthrocera
filipendula). The same thing happened with frogs. When the gooseberry
caterpillars were first given to them, "they sprang forward and licked
them eagerly into their mouths; no sooner, however, had they done so,
than they seemed to become aware of the mistake that they had made, and
sat with gaping mouths, rolling their tongues about, until they had got
quit of the nauseous morsels, which seemed perfectly uninjured, and
walked off as briskly as ever." Spiders seemed equally to dislike them.
This and another conspicuous caterpillar (Halia wavaria) were rejected
by two species--the geometrical garden spider (Epeira diadema) and a
hunting spider.[95]
Some further experiments with lizards were made by Professor Weismann,
quite confirming the previous observations; and in 1886 Mr. E.B. Poulton
of Oxford undertook a considerable series of experiments, with many
other species of larvae and fresh kinds of lizards and frogs. Mr.
Poulton then reviewed the whole subject, incorporating all recorded
facts, as well as some additional observations made by Mr. Jenner Weir
in 1886. More than a hundred species of larvae or of perfect insects of
various orders have now been made the subject of experiment, and the
results completely confirm my original suggestion. In almost every case
the protectively coloured larvae have been greedily eaten by all kinds
of insectivorous animals, while, in the immense majority of cases, the
conspicuous, hairy, or brightly coloured larvae have been rejected by
some or all of them. In some instances the inedibility of the larvae
extends to the perfect insect, but not in others. In the former cases
the perfect insect is usually adorned with conspicuous colours, as the
burnet and ragwort moths; but in the case of the buff-tip, the moth
resembles a broken piece of rotten stick, yet it is partly inedible,
being refused by lizards. It is, however, very doubtful whether these
are its chief enemies, and its protective form and colour may be needed
against insectivorous birds or mammals.
Mr. Samuel H. Scudder, who has largely bred North American butterflies,
has found so many of the eggs and larvae destroyed by hymenopterous and
dipterous parasites that he thinks at least nine-tenths, perhaps a
greater proportion, never reach maturity. Yet he has never found any
evidence that such parasites attack either the egg or the larva of the
inedible Danais archippus, so that in this case the insect is
distasteful to its most dangerous foes in all the stages of its
existence, a fact which serves to explain its great abundance and its
extension over almost the whole world.[96]
One case has been found of a protectively coloured larva,--one,
moreover, which in all its habits shows that it trusts to concealment to
escape its enemies--which was yet always rejected by lizards after they
had seized it, evidently under the impression that from its colour it
would be eatable. This is the caterpillar of the very common moth Mania
typica; and Mr. Poulton thinks that, in this case, the unpleasant taste
is an incidental result of some physiological processes in the organism,
and is itself a merely useless character. It is evident that the insect
would not conceal itself so carefully as it does if it had not some
enemies, and these are probably birds or small mammals, as its
food-plants are said to be dock and willow-herb, not suggestive of
places frequented by lizards; and it has been found by experiment that
lizards and birds have not always the same likes and dislikes. The case
is interesting, because it shows that nauseous fluids sometimes occur
sporadically, and may thus be intensified by natural selection when
required for the purpose of protection. Another exceptional case is
that of the very conspicuous caterpillar of the spurge hawk-moth
(Deilephila euphorbiae), which was at once eaten by a lizard, although,
as it exposes itself on its food-plant in the daytime and is very
abundant in some localities, it must almost certainly be disliked by
birds or by some animals who would otherwise devour it. If disturbed
while feeding it is said to turn round with fury and eject a quantity of
green liquid, of an acid and disagreeable smell similar to that of the
spurge milk, only worse.[97]
These facts, and Mr. Poulton's evidence that some larvae rejected by
lizards at first will be eaten if the lizards are very hungry, show that
there are differences in the amount of the distastefulness, and render
it probable that if other food were wanting many of these conspicuous
insects would be eaten. It is the abundance of the eatable kinds that
gives value to the inedibility of the smaller number; and this is
probably the reason why so many insects rely on protective colouring
rather than on the acquisition of any kind of defensive weapons. In the
long run the powers of attack and defence must balance each other. Hence
we see that even the powerful stings of bees and wasps only protect them
against some enemies, since a tribe of birds, the bee-eaters, have been
developed which feed upon them, and some frogs and lizards do so
occasionally.
The preceding outline will sufficiently explain the characteristics of
"warning coloration" and the end it serves in nature. There are many
other curious modifications of it, but these will be best appreciated
after we have discussed the remarkable phenomenon of "mimicry," which is
bound up with and altogether depends upon "warning colour," and is in
some cases the chief indication we have of the possession of some
offensive weapon to secure the safety of the species imitated.
_Mimicry._
This term has been given to a form of protective resemblance, in which
one species so closely resembles another in external form and colouring
as to be mistaken for it, although the two may not be really allied and
often belong to distinct families or orders. One creature seems
disguised in order to be made like another; hence the terms "mimic" and
mimicry, which imply no voluntary action on the part of the imitator. It
has long been known that such resemblances do occur, as, for example,
the clear-winged moths of the families Sesiidae and Aegeriidae, many of
which resemble bees, wasps, ichneumons, or saw-flies, and have received
names expressive of the resemblance; and the parasitic flies (Volucella)
which closely resemble bees, on whose larvae the larvae of the flies
feed.
The great bulk of such cases remained, however, unnoticed, and the
subject was looked upon as one of the inexplicable curiosities of
nature, till Mr. Bates studied the phenomenon among the butterflies of
the Amazon, and, on his return home, gave the first rational explanation
of it.[98] The facts are, briefly, these. Everywhere in that fertile
region for the entomologist the brilliantly coloured Heliconidae abound,
with all the characteristics which I have already referred to when
describing them as illustrative of "warning coloration." But along with
them other butterflies were occasionally captured, which, though often
mistaken for them, on account of their close resemblance in form,
colour, and mode of flight, were found on examination to belong to a
very distinct family, the Pieridae. Mr. Bates notices fifteen distinct
species of Pieridae, belonging to the genera Leptalis and Euterpe, each
of which closely imitates some one species of Heliconidae, inhabiting
the same region and frequenting the same localities. It must be
remembered that the two families are altogether distinct in structure.
The larvae of the Heliconidae are tubercled or spined, the pupae
suspended head downwards, and the imago has imperfect forelegs in the
male; while the larvae of the Pieridae are smooth, the pupae are
suspended with a brace to keep the head erect, and the forefeet are
fully developed in both sexes. These differences are as large and as
important as those between pigs and sheep, or between swallows and
sparrows; while English entomologists will best understand the case by
supposing that a species of Pieris in this country was coloured and
shaped like a small tortoise-shell, while another species on the
Continent was equally like a Camberwell beauty--so like in both cases
as to be mistaken when on the wing, and the difference only to be
detected by close examination. As an example of the resemblance,
woodcuts are given of one pair in which the colours are simple, being
olive, yellow, and black, while the very distinct neuration of the wings
and form of the head and body can be easily seen.
[Illustration: FIG. 23.--Methona psidii (Heliconidae). Leptalis orise
(Pieridae).]
Besides these Pieridae, Mr. Bates found four true Papilios, seven
Erycinidae, three Castnias (a genus of day-flying moths), and fourteen
species of diurnal Bombycidae, all imitating some species of Heliconidae
which inhabited the same district; and it is to be especially noted that
none of these insects were so abundant as the Heliconidae they
resembled, generally they were far less common, so that Mr. Bates
estimated the proportion in some cases as not one to a thousand. Before
giving an account of the numerous remarkable cases of mimicry in other
parts of the world, and between various groups of insects and of higher
animals, it will be well to explain briefly the use and purport of the
phenomenon, and also the mode by which it has been brought about.
_How Mimicry has been Produced._
The fact has been now established that the Heliconidae possess an
offensive odour and taste, which lead to their being almost entirely
Share with your friends: |