Figure 2-1. FQPSK-JR Baseband Signal Generator 7
Figure 2-2. Basic SOQPSK. 10
Figure 2-3. SOQPSK Transmitter. 12
Figure 2-4. Conceptual CPM modulator. 13
Figure 2-5. Continuous single sideband phase noise power spectral density 15
Figure 4-1. PCM code definitions. 3
Figure 4-2. PCM frame structure. 5
Figure 4-3 16 bit standardized time word format. 9
Figure 4-4. Time word insertion into 12 bit PCM word size. 9
Figure 4-5. Asynchronous word structure. 11
Figure 4-6 Overhead truth table. 11
Figure 5-1. Insertion of CVSD encoded audio into a PCM stream. 2
Figure 6-1. Recorded tape format. 12
Figure 6-2. Record and reproduce head and head segment identification and location (N-track interlaced system). 13
Figure 6-5. Serial high-density digital record and reproduce. 27
Figure 6-6. Location and dimensions of recorded tracks. 30
Figure 6-7. ADARIO block format. 33
Figure 6-8. ADARIO data format. 34
Figure 6-9a. Submux data format. 38
Figure 6-9b. Submux data format. 39
Figure 6-10. Helical track dimensions, B format. 41
Figure 6-11. Helical track dimensions, E format. 41
Figure 6-12. Recorded tracks on tape, B format. 45
Figure 6-13. Tape cartridge layout. 46
Figure 6-14. Helical track format. 47
Figure 6-15. Typical VLDS data path electronics block diagram. 49
Figure 6-16. Interleave buffer architectures. 51
Figure 6-17. The steps of the build process. 57
Figure 6-18. Recorder state transition diagram. 64
Figure 8-1. System block diagram. 2
Figure 8-2. Word construction. 4
Figure 8-3. Composite frame structure. 7
Figure 8-4. Multiple tape track spread format (4-track spread example). 8
Figure 9-1. Group relationships. 6
Figure 9-2. General Information Group (G). 7
Figure 9-3. Transmission Attributes Group (T). 11
Figure 9-4. Tape/Storage Source Attributes Group (R). 17
Figure 9-5. Multiplex/Modulation Attributes Group (M). 27
Figure 9-6. PCM Format Attributes Group (P). 31
Figure 9-7. PCM Measurement Description Group (D). 45
Figure 9-8. Bus Data Attributes Group (B). 57
Figure 9-9. PAM Attributes Group (A). 64
Figure 9-10. Data Conversion Attributes Group (C). 69
Figure 10-1. Functional layout of standard. 2
Figure 10-2. Directory Block Structure. 9
Figure 10-3. Directory Block (as depicted in STANAG 4575). 10
16
Figure 10-4. General Packet Format. 16
Figure 10-5. A 32-Bit Packet Format Layout. 17
18
Figure 10-6. Packet trailer for 32-bit Data Checksum. 18
18
Figure 10-7. Packet trailer for 8-bit Data Checksum. 18
23
Figure 10-8. General PCM Data Packet, Format 1. 23
Figure 10-9. PCM Packet Channel Specific Data format. 24
26
Figure 10-10. PCM Data – Unpacked Mode Sample Packet. 26
27
Figure 10-11. PCM Data – Packed Mode Sample Packet. 27
28
Figure 10-12. PCM Data – Throughput Mode sample packet. 28
28
Figure 10-13. PCM Intra-Packet header. 28
30
Figure 10-14. General Time Data Packet, Format 1. 30
Figure 10-15. Time Data Packet Channel Specific Data Word format. 30
Figure 10-16a. Time Data - Packet Format, Day Format. 32
Figure 10-16b. Time Data - Packet Format, Day, Month, And Year Format. 32
Figure 10-17. MIL-STD-1553 Packet Body Channel Specific Data Word format. 32
Figure 10-18. MIL-STD-1553 Data Packet, Format 1. 33
34
Figure 10-19. MIL-STD-1553 Intra-Packet Data Header. 34
Figure 10-20. Block Status Word bit definitions. 34
Figure 10-21. Gap Times Word bit definitions. 36
37
Figure 10-22. MIL-STD-1553 Data Packet, Format 1. 37
38
Figure 10-23. Generic Analog Data Packet, Format 1. 38
Figure 10-24. Analog Data Packets, Channel Specific Data word format. 39
43
Figure 10-25. Analog Data Packet – msb Unpacked Mode. 43
44
Figure 10-26. Analog Data Packet – lsb Unpacked Mode. 44
44
Figure 10-27. Analog Data Packet – Packed Mode packet. 44
45
Figure 10-28. General Discrete Data Packet, Format 1. 45
Figure 10-29. Discrete packet Channel Specific Data word format. 45
Figure 10-30. Discrete Data Event State word format. 46
46
Figure 10-31. Discrete Event Intra-Packet Data Header. 46
47
Figure 10-32. Discrete Data – Packet format. 47
48
Figure 10-33. General Computer Generated Data Packet format. 48
Figure 10-34. Computer Generated Data Packet - Channel Specific Data word format. 48
49
Figure 10-35. ARINC-429 Data Packet format. 49
Figure 10-36. ARINC 429 Packet Channel Specific Data Word format. 49
Figure 10-37. ARINC 429 ID Word bit definitions. 50
51
Figure 10-38. Message Data Packet format. 51
Figure 10-39. Complete Message Channel Specific Data Word Format. 51
Figure 10-40. Segmented type of Packet Body Channel Specific Data Word format. 52
53
Figure 10-41. Message Data Intra-Packet Header. 53
Figure 10-42. Intra-Packet Data Header format. 53
55
Figure 10-43. General MPEG-2 Video Packet, Format 0. 55
Figure 10-44. Video Packet Channel Specific Data Word format. 55
57
Figure 10-45. Format 0 MPEG-2 Video Frame Sync and Word format. 57
57
Figure 10-46. Format 0 MPEG-2 Video Data – sample packet. 57
Figure 10-47. Image Packet, Format 0. 58
Figure 10-48. Image Packet Channel Specific Data Word format. 58
59
Figure 10-49. Format 1 Image Data Intra-Packet Data Header. 59
Figure 10-50. UART Data Packet Format 0. 60
Figure 10-51. UART Packet Channel Specific Data Word, Format 0. 61
61
Figure 10-52. UART Data Intra-Packet Data Header. 61
Figure 10-53. UART Data ID Word format. 62
63
Figure 10-54. Required Discrete Control Functions. 63
Figure 10-55. Discrete Control and Indicator functional diagram. 65
Figure A-1. Spectra of 10-Mb/s CPFSK, ARTM CPM, FQPSK-JR, SOQPSK-TG signals. 4
Figure A-3. 10 Mb/s ARTM CPM signals with 9 MHz center frequency separation 7
Figure A-2. 5 Mb/s PCM/FM signals with 11 MHz center frequency separation. 7
Figure A-4. RNRZ PCM/FM signal. 11
Figure A-5. Spectrum analyzer calibration of 0-dBc level 12
Figure A-6. Bi PCM/PM signal 13
Figure A-7. FM/AM signal and Carson’s Rule 13
Figure A-8. Typical receiver RLC IF filter response (-3 dB bandwidth = 1 MHz). 15
Figure A-9. RLC and SAW IF filters 16
Figure A-10. Filtered 5-Mb/s RNRZ PCM/FM signal and spectral mask. 18
Figure A-11. Unfiltered 5-Mb/s RNRZ PCM/FM signal and spectral mask. 18
Figure A-12. Typical 5-Mb/s SOQPSK‑TG signal and spectral mask. 20
Figure A-13. Typical 5-Mb/s ARTM CPM signal and spectral mask. 20
Figure A-14. OQPSK modulator. 21
Figure A-15. I & Q constellation. 21
Figure A-16. FQPSK wavelet eye diagram. 22
Figure A-17. FQPSK-B I & Q eye 22
diagrams (at input to IQ modulator). 22
Figure A-18. FQPSK-B vector diagram. 22
Figure A-19. 5 Mb/s FQPSK-JR spectrum with random input data and small (blue) and large (red) modulator errors. 23
Figure A-20. FQPSK-B spectrum with all 0’s input and large modulator errors. 23
Figure A-21. FQPSK-JR BEP vs. Eb/N0. 25
Figure A-22. Measured SOQPSK-TG phase trajectory 25
Figure A-23. SOQPSK-TG Power Spectrum (5 Mb/s). 26
Figure A-24. BEP versus Eb/No performance of 5 Mb/s SOQPSK-TG. 26
Figure A-25. Power spectrum of 5 Mb/s 26
ARTM CPM. 26
Figure A-26. BEP versus Eb/No performance of 5 Mb/s ARTM CPM. 27
Figure A-27. Power spectrum of 5 Mb/s PCM/FM signal. 27
Figure A-28. BEP versus Eb/No performance of 5 Mb/s PCM/FM with multi-symbol bit detector and three single symbol receivers/detectors. 28
Figure C-1. BEP vs IF SNR in bandwidth = bit rate for NRZ-L PCM/FM. 1
Figure C-2. Spectral densities of random NRZ and Bi codes. 4
4
Figure C-3. Theoretical bit error probability performance for various baseband PCM signaling techniques (perfect bit synchronization assumed). 4
Figure C-4. Major Frame Length = Minor Frame Maximum Length. 6
Figure C-5. Major Frame Length = Minor Frame Maximum Length multiplied by Z. 7
Figure C-6. Major Frame Length = Minor Frame Maximum Length multiplied by Z. 8
Figure D-1. Record and reproduce head and head segment identification and location (7-track interlaced system). 3
Figure D-2. Randomizer block diagram. 10
Figure D-3. Randomized NRZ-L decoder block diagram. 12
Figure D-4. Random PCM power spectra. 13
Figure D-5a. Bi-L at bit packing density of 15 kb/in. 14
Figure D-5b. RNRZ-L at bit packing density of 25 kb/in. 14
Figure D-6. Tape crossplay. 17
Figure D-7. Square wave responses. 22
Figure F-1a. Typical CVSD encoder. 2
Figure F-1b. Typical CVSD decoder. 2
Figure F-2. Typical envelope characteristics of the decoder output signal for CVSD. 5
Figure F-3. Interface diagram for CVSD converter. 7
Figure F-4a. Insertion loss versus frequency for CVSD (16 kbps). 9
Figure F-4b. Insertion loss versus frequency for CVSD (32 kbps). 9
Figure F-5a. Variation of gain with input level for CVSD (16 kbps). 10
Figure F-5b. Variation of gain with input level for CVSD (32 kbps). 10
Figure F-6a. Signal to quantizing noise ratio vs input level for CVSD (16 kbps). 11
11
Figure F-6b. Signal to quantizing noise ratio vs input level for 11
CVSD (32 kbps). 11
Figure F-7a. Signal to quantizing noise ratio versus frequency for CVSD (16 kbps). 12
Figure F-7b. Signal to quantizing noise ratio versus frequency for CVSD (32 kbps). 12
Figure G-1. ADARIO data format. 2
Figure G-2. ADARIO data blocks. 3
Figure G-3. ADARIO timing. 4
Figure G-4a. Submux data format. 18
Figure G-4b. Submux data format. 19
Figure G-5. Submux aggregate format. 20
Figure H-1. Typical elements of the telemetry attributes transfer process. 2
Figure I-1. Sample cover sheet for attribute transfer files. 1
2
Figure J-1. Group linkages. 2
Figure J-2. PCM format for PCM w/async. 5
Figure J-3. PCM format for PCM1. 6
Figure J-4. PCM format for async. 7
Figure K-1. 50‑percent duty cycle PAM with amplitude synchronization. 2
Figure K-2. 100‑percent duty cycle PAM with amplitude synchronization. 2
Figure M-1. Transmission System. 22
Figure M-2. OFFSET QPSK 106 Symbol to Phase Mapping Convention. 23
Figure M-3. Detection ambiguity. 23
Figure M-4. QPSK State Timing 24
Figure M-5. OFFSET QPSK State Timing. 25
Figure M-6. Basic SOQPSK Transmitter. 33
Figure M-7. OQPSK Transmitter (with precoder). 34