ESZS010-13 Structural Design Optimization (4-0-4)
Syllabus:
Concepts of optimization in engineering (design variables, objective function, constraints etc.) Solution of optimization problems using differential calculus. Lagrange multipliers method. Kuhn-Tucker (KKT) optimality conditions. Mathematical programming methods: Simplex algorithm. Computational methods for the solution of nonlinear constrained and unconstrained optimization problems: conjugate gradient method, augmented Lagrangian method. Sequential linear programming. Introduction to probabilistic methods: simulated annealing; genetic algorithm. Applications to the optimization of structural problems.
Prerequisites:
Numerical Calculus; Solid Mechanics.
Required texts:
HAFTKA, R.T., ZAFER, G. Elements of Structural Optimization. 3. ed. New York: Springer, 1991.
SINGIRESU, S.R. Engineering Optimization: Theory and Practice. 3. ed. Hamilton: JohnWiley & Sons, 199.
RAVINDRAN, A.; RAGSDELL, K.M.; REKLAITIS. Engineering Optimization: Methods and Applications. 2. ed. Hamilton: John-Wiley & Sons, 2006.
Additional texts:
VENKATARAMAN, P. Applied optimization with MATLAB programming. Hamilton: JohnWiley & Sons, 2002.
FOX, R. Optimization Methods for Engineering Design. Reading, PA: Addison-Wesley Publishing Co., 1973.
LUENBERGER, D. Linear and nonlinear programming. 2. ed. Reading, PA: Addison-Wesley Publishing Co., 1984.
VANDERPLAATS, G.N. Numerical Optimization Techniques for Engineering. 3. ed. Monterrey, CA: Vanderplaats Research and Development, 1999.
BENDSOE, M.P.; SIGMUND, O. Topology Optimization. New York: Springer, 2004.
|