V THE DISCOVERY AND STUDY OF CELLS
The first observations of cells were made in 1665 by English scientist Robert Hooke, who used a crude microscope of his own invention to examine a variety of objects, including a thin piece of cork. Noting the rows of tiny boxes that made up the dead wood’s tissue, Hooke coined the term cell because the boxes reminded him of the small cells occupied by monks in a monastery. While Hooke was the first to observe and describe cells, he did not comprehend their significance. At about the same time, the Dutch maker of microscopes Antoni van Leeuwenhoek pioneered the invention of one of the best microscopes of the time. Using his invention, Leeuwenhoek was the first to observe, draw, and describe a variety of living organisms, including bacteria gliding in saliva, one-celled organisms cavorting in pond water, and sperm swimming in semen. Two centuries passed, however, before scientists grasped the true importance of cells.
Modern ideas about cells appeared in the 1800s, when improved light microscopes enabled scientists to observe more details of cells. Working together, German botanist Matthias Jakob Schleiden and German zoologist Theodor Schwann recognized the fundamental similarities between plant and animal cells. In 1839 they proposed the revolutionary idea that all living things are made up of cells. Their theory gave rise to modern biology: a whole new way of seeing and investigating the natural world.
By the late 1800s, as light microscopes improved still further, scientists were able to observe chromosomes within the cell. Their research was aided by new techniques for staining parts of the cell, which made possible the first detailed observations of cell division, including observations of the differences between mitosis and meiosis in the 1880s. In the first few decades of the 20th century, many scientists focused on the behavior of chromosomes during cell division. At that time, it was generally held that mitochondria transmitted the hereditary information. By 1920, however, scientists determined that chromosomes carry genes and that genes transmit hereditary information from generation to generation.
During the same period, scientists began to understand some of the chemical processes in cells. In the 1920s, the ultracentrifuge was developed. The ultracentrifuge is an instrument that spins cells or other substances in test tubes at high speeds, which causes the heavier parts of the substance to fall to the bottom of the test tube. This instrument enabled scientists to separate the relatively abundant and heavy mitochondria from the rest of the cell and study their chemical reactions. By the late 1940s, scientists were able to explain the role of mitochondria in the cell. Using refined techniques with the ultracentrifuge, scientists subsequently isolated the smaller organelles and gained an understanding of their functions.
While some scientists were studying the functions of cells, others were examining details of their structure. They were aided by a crucial technological development in the 1940s: the invention of the electron microscope, which uses high-energy electrons instead of light waves to view specimens. New generations of electron microscopes have provided resolution, or the differentiation of separate objects, thousands of times more powerful than that available in light microscopes. This powerful resolution revealed organelles such as the endoplasmic reticulum, lysosomes, the Golgi apparatus, and the cytoskeleton. The scientific fields of cell structure and function continue to complement each other as scientists explore the enormous complexity of cells.
The discovery of the structure of DNA in 1953 by American biochemist James D. Watson and British biophysicist Francis Crick ushered in the era of molecular biology. Today, investigation inside the world of cells—of genes and proteins at the molecular level—constitutes one of the largest and fastest moving areas in all of science. One particularly active field in recent years has been the investigation of cell signaling, the process by which molecular messages find their way into the cell via a series of complex protein pathways in the cell.
Another busy area in cell biology concerns programmed cell death, or apoptosis. Millions of times per second in the human body, cells commit suicide as an essential part of the normal cycle of cellular replacement. This also seems to be a check against disease: When mutations build up within a cell, the cell will usually self-destruct. If this fails to occur, the cell may divide and give rise to mutated daughter cells, which continue to divide and spread, gradually forming a growth called a tumor. This unregulated growth by rogue cells can be benign, or harmless, or cancerous, which may threaten healthy tissue. The study of apoptosis is one avenue that scientists explore in an effort to understand how cells become cancerous.
Scientists are also discovering exciting aspects of the physical forces within cells. Cells employ a form of architecture called tensegrity, which enables them to withstand battering by a variety of mechanical stresses, such as the pressure of blood flowing around cells or the movement of organelles within the cell. Tensegrity stabilizes cells by evenly distributing mechanical stresses to the cytoskeleton and other cell components. Tensegrity also may explain how a change in the cytoskeleton, where certain enzymes are anchored, initiates biochemical reactions within the cell, and can even influence the action of genes. The mechanical rules of tensegrity may also account for the assembly of molecules into the first cells. Such new insights—made some 300 years after the tiny universe of cells was first glimpsed—show that cells continue to yield fascinating new worlds of discovery.
Animal Cell
An animal cell typically contains several types of membrane-bound organs, or organelles. The nucleus directs activities of the cell and carries genetic information from generation to generation. The mitochondria generate energy for the cell. Proteins are manufactured by ribosomes, which are bound to the rough endoplasmic reticulum or float free in the cytoplasm. The Golgi apparatus modifies, packages, and distributes proteins while lysosomes store enzymes for digesting food. The entire cell is wrapped in a lipid membrane that selectively permits materials to pass in and out of the cytoplasm.
Microsoft ® Encarta ® 2006. © 1993-2005 Microsoft Corporation. All rights reserved.
Question :11
Plastics
I INTRODUCTION
Plastics, materials made up of large, organic (carbon-containing) molecules that can be formed into a variety of products. The molecules that compose plastics are long carbon chains that give plastics many of their useful properties. In general, materials that are made up of long, chainlike molecules are called polymers. The word plastic is derived from the words plasticus (Latin for “capable of molding”) and plastikos (Greek “to mold,” or “fit for molding”). Plastics can be made hard as stone, strong as steel, transparent as glass, light as wood, and elastic as rubber. Plastics are also lightweight, waterproof, chemical resistant, and produced in almost any color. More than 50 families of plastics have been produced, and new types are currently under development.
Like metals, plastics come in a variety of grades. For instance, nylons are plastics that are separated by different properties, costs, and the manufacturing processes used to produce them. Also like metals, some plastics can be alloyed, or blended, to combine the advantages possessed by several different plastics. For example, some types of impact-resistant (shatterproof) plastics and heat-resistant plastics are made by blending different plastics together.
Plastics are moldable, synthetic (chemically-fabricated) materials derived mostly from fossil fuels, such as oil, coal, or natural gas. The raw forms of other materials, such as glass, metals, and clay, are also moldable. The key difference between these materials and plastics is that plastics consist of long molecules that give plastics many of their unique properties, while glass, metals, and clay consist of short molecules.
II USES OF PLASTICS
Plastics are indispensable to our modern way of life. Many people sleep on pillows and mattresses filled with a type of plastic—either cellular polyurethane or polyester. At night, people sleep under blankets and bedspreads made of acrylic plastics, and in the morning, they step out of bed onto polyester and nylon carpets. The cars we drive, the computers we use, the utensils we cook with, the recreational equipment we play with, and the houses and buildings we live and work in all include important plastic components. The average car contains almost 136 kg (almost 300 lb) of plastics—nearly 12 percent of the vehicle’s overall weight. Telephones, textiles, compact discs, paints, plumbing fixtures, boats, and furniture are other domestic products made of plastics. In 1979 the volume of plastics produced in the United States surpassed the volume of domestically produced steel.
Plastics are used extensively by many key industries, including the automobile, aerospace, construction, packaging, and electrical industries. The aerospace industry uses plastics to make strategic military parts for missiles, rockets, and aircraft. Plastics are also used in specialized fields, such as the health industry, to make medical instruments, dental fillings, optical lenses, and biocompatible joints.
III GENERAL PROPERTIES OF PLASTICS
Plastics possess a wide variety of useful properties and are relatively inexpensive to produce. They are lighter than many materials of comparable strength, and unlike metals and wood, plastics do not rust or rot. Most plastics can be produced in any color. They can also be manufactured as clear as glass, translucent (transmitting small amounts of light), or opaque (impenetrable to light).
Plastics have a lower density than that of metals, so plastics are lighter. Most plastics vary in density from 0.9 to 2.2 g/cm3 (0.45 to 1.5 oz/cu in), compared to steel’s density of 7.85 g/cm3 (5.29 oz/cu in). Plastic can also be reinforced with glass and other fibers to form incredibly strong materials. For example, nylon reinforced with glass can have a tensile strength (resistance of a material to being elongated or pulled apart) of up to 165 Mega Pascal (24,000 psi).
Plastics have some disadvantages. When burned, some plastics produce poisonous fumes. Although certain plastics are specifically designed to withstand temperatures as high as 288° C (550° F), in general plastics are not used when high heat resistance is needed. Because of their molecular stability, plastics do not easily break down into simpler components. As a result, disposal of plastics creates a solid waste problem (see Plastics and the Environment below).
IV CHEMISTRY OF PLASTICS
Plastics consist of very long molecules each composed of carbon atoms linked into chains. One type of plastic, known as , is composed of extremely long molecules that each contain over 200,000 carbon atoms. These long, chainlike molecules give plastics unique properties and distinguish plastics from materials, such as metals, that have short, crystalline molecular structures.
Although some plastics are made from plant oils, the majority are made from fossil fuels. Fossil fuels contain hydrocarbons (compounds containing hydrogen and carbon), which provide the building blocks for long polymer molecules. These small building blocks, called monomers, link together to form long carbon chains called polymers. The process of forming these long molecules from hydrocarbons is known as polymerization. The molecules typically form viscous, sticky substances known as resins, which are used to make plastic products.
Ethylene, for example, is a gaseous hydrocarbon. When it is subjected to heat, pressure, and certain catalysts (substances used to enable faster chemical reactions), the ethylene molecules join together into long, repeating carbon chains. These joined molecules form a plastic resin known as .
Joining identical monomers to make carbon chains is called addition polymerization, because the process is similar to stringing many identical beads on a string. Plastics made by addition polymerization include polyethylene, , polyvinyl chloride, and . Joining two or more different monomers of varying lengths is known as condensation polymerization, because water or other by-products are eliminated as the polymer forms. Condensation polymers include (polyamide), polyester, and polyurethane.
The properties of a plastic are determined by the length of the plastic’s molecules and the specific monomer present. For example, elastomers are plastics composed of long, tightly twisted molecules. These coiled molecules allow the plastic to stretch and recoil like a spring. Rubber bands and flexible silicone caulking are examples of elastomers.
The carbon backbone of polymer molecules often bonds with smaller side chains consisting of other elements, including chlorine, fluorine, nitrogen, and silicon. These side chains give plastics some distinguishing characteristics. For example, when chlorine atoms substitute for hydrogen atoms along the carbon chain, the result is polyvinyl chloride, one of the most versatile and widely used plastics in the world. The addition of chlorine makes this plastic harder and more heat resistant.
Different plastics have advantages and disadvantages associated with the unique chemistry of each plastic. For example, longer polymer molecules become more entangled (like spaghetti noodles), which gives plastics containing these longer polymers high tensile strength and high impact resistance. However, plastics made from longer molecules are more difficult to mold.
V THERMOPLASTICS AND THERMOSETTING PLASTICS
All plastics, whether made by addition or condensation polymerization, can be divided into two groups: thermoplastics and thermosetting plastics. These terms refer to the different ways these types of plastics respond to heat. Thermoplastics can be repeatedly softened by heating and hardened by cooling. Thermosetting plastics, on the other hand, harden permanently after being heated once.
The reason for the difference in response to heat between thermoplastics and thermosetting plastics lies in the chemical structures of the plastics. Thermoplastic molecules, which are linear or slightly branched, do not chemically bond with each other when heated. Instead, thermoplastic chains are held together by weak van der Waal forces (weak attractions between the molecules) that cause the long molecular chains to clump together like piles of entangled spaghetti. Thermoplastics can be heated and cooled, and consequently softened and hardened, repeatedly, like candle wax. For this reason, thermoplastics can be remolded and reused almost indefinitely.
Thermosetting plastics consist of chain molecules that chemically bond, or cross-link, with each other when heated. When thermosetting plastics cross-link, the molecules create a permanent, three-dimensional network that can be considered one giant molecule. Once cured, thermosetting plastics cannot be remelted, in the same way that cured concrete cannot be reset. Consequently, thermosetting plastics are often used to make heat-resistant products, because these plastics can be heated to temper
tures of 260° C (500° F) without melting.
The different molecular structures of thermoplastics and thermosetting plastics allow manufacturers to customize the properties of commercial plastics for specific applications. Because thermoplastic materials consist of individual molecules, properties of thermoplastics are largely influenced by molecular weight. For instance, increasing the molecular weight of a thermoplastic material increases its tensile strength, impact strength, and fatigue strength (ability of a material to withstand constant stress). Conversely, because thermosetting plastics consist of a single molecular network, molecular weight does not significantly influence the properties of these plastics. Instead, many properties of thermosetting plastics are determined by adding different types and amounts of fillers and reinforcements, such as glass fibers (see Materials Science and Technology).
Thermoplastics may be grouped according to the arrangement of their molecules. Highly aligned molecules arrange themselves more compactly, resulting in a stronger plastic. For example, molecules in nylon are highly aligned, making this thermoplastic extremely strong. The degree of alignment of the molecules also determines how transparent a plastic is. Thermoplastics with highly aligned molecules scatter light, which makes these plastics appear opaque. Thermoplastics with semialigned molecules scatter some light, which makes most of these plastics appear translucent. Thermoplastics with random (amorphous) molecular arrangement do not scatter light and are clear. Amorphous thermoplastics are used to make optical lenses, windshields, and other clear products.
VI MANUFACTURING PLASTIC PRODUCTS
The process of forming plastic resins into plastic products is the basis of the plastics industry. Many different processes are used to make plastic products, and in each process, the plastic resin must be softened or sufficiently liquefied to be shaped.
A Forming Thermoplastics
Although some processes are used to manufacture both thermoplastics and thermosetting plastics, certain processes are specific to forming thermoplastics. (For more information, see the Casting and Expansion Processes section of this article.)
A1 Injection Molding
Injection molding uses a piston or screw to force plastic resin through a heated tube into a mold, where the plastic cools and hardens to the shape of the mold. The mold is then opened and the plastic cast removed. Thermoplastic items made by injection molding include toys, combs, car grills, and various containers.
A2 Extrusion
Extrusion is a continuous process, as opposed to all other plastic production processes, which start over at the beginning of the process after each new part is removed from the mold. In the extrusion process, plastic pellets are first heated in a long barrel. In a manner similar to that of a pasta-making or sausage-stuffing machine, a rotating screw then forces the heated plastic through a die (device used for forming material) opening of the desired shape.
As the continuous plastic form emerges from the die opening, it is cooled and solidified, and the continuous plastic form is then cut to the desired length. Plastic products made by extrusion include garden hoses, drinking straws, pipes, and ropes. Melted thermoplastic forced through extremely fine die holes can be cooled and woven into fabrics for clothes, curtains, and carpets.
A3 Blow Molding
Blow molding is used to form bottles and other containers from soft, hollow thermoplastic tubes. First a mold is fitted around the outside of the softened thermoplastic tube, and then the tube is heated. Next, air is blown into the softened tube (similar to inflating a balloon), which forces the outside of the softened tube to conform to the inside walls of the mold. Once the plastic cools, the mold is opened and the newly molded container is removed. Blow molding is used to make many plastic containers, including soft-drink bottles, jars, detergent bottles, and storage drums.
A4 Blow Film Extrusion
Blow film extrusion is the process used to make plastic garbage bags and continuous sheets. This process works by extruding a hollow, sealed-end thermoplastic tube through a die opening. As the flattened plastic tube emerges from the die opening, air is blown inside the hollow tube to stretch and thin the tube (like a balloon being inflated) to the desired size and wall thickness.
The plastic is then air-cooled and pulled away on take-up rollers to a heat-sealing operation. The heat-sealer cuts and seals one end of the thinned, flattened thermoplastic tube, creating various bag lengths for products such as plastic grocery and garbage bags. For sheeting (flat film), the thinned plastic tube is slit along one side and opened to form a continuous sheet.
A5 Calendering
The calendering process forms continuous plastic sheets that are used to make flooring, wall siding, tape, and other products. These plastic sheets are made by forcing hot thermoplastic resin between heated rollers called calenders. A series of secondary calenders further thins the plastic sheets. Paper, cloth, and other plastics may be pressed between layers of calendered plastic to make items such as credit cards, playing cards, and wallpaper.
A6 Thermoforming
Thermoforming is a term used to describe several techniques for making products from plastic sheets. Products made from thermoformed sheets include trays, signs, briefcase shells, refrigerator door liners, and packages. In a vacuum-forming process, hot thermoplastic sheets are draped over a mold. Air is removed from between the mold and the hot plastic, which creates a vacuum that draws the plastic into the cavities of the mold. When the plastic cools, the molded product is removed. In the pressure-forming process, compressed air is used to drive a hot plastic sheet into the cavities and depressions of a concave, or female, mold. Vent holes in the bottom of the mold allow trapped air to escape.
B Forming Thermosetting Plastics
Thermosetting plastics are manufactured by several methods that use heat or pressure to induce polymer molecules to bond, or cross-link, into typically hard and durable products.
B1 Compression Molding
Compression molding forms plastics through a technique that is similar to the way a waffle iron forms waffles from batter. First, thermosetting resin is placed into a steel mold. The application of heat and pressure, which accelerate cross-linking of the resin, softens the material and squeezes it into all parts of the mold to form the desired shape. Once the material has cooled and hardened, the newly formed object is removed from the mold. This process creates hard, heat-resistant plastic products, including dinnerware, telephones, television set frames, and electrical parts.
B2 Laminating
The laminating process binds layers of materials, such as textiles and paper, together in a plastic matrix. This process is similar to the process of joining sheets of wood to make plywood. Resin-impregnated layers of textiles or paper are stacked on hot plates, then squeezed and fused together by heat and pressure, which causes the polymer molecules to cross-link. The best-known laminate trade name is Formica, which is a product consisting of resin-impregnated layers of paper with decorative patterns such as wood grain, marble, and colored designs. Formica is often used as a surface finish for furniture, and kitchen and bathroom countertops. Thermosetting resins known as melamine and phenolic resins form the plastic matrix for Formica and other laminates. Electric circuit boards are also laminated from resin-impregnated paper, fabric, and glass fibers.
B3 Reaction Injection Molding (RIM)
Strong, sizable, and durable plastic products such as automobile body panels, skis, and business machine housings are formed by reaction injection molding. In this process, liquid thermosetting resin is combined with a curing agent (a chemical that causes the polymer molecules to cross-link) and injected into a mold. Most products made by reaction injection molding are made from .
C Forming Both Types of Plastics
Certain plastic fabrication processes can be used to form either thermoplastics or thermosetting plastics.
C1 Casting
The casting process is similar to that of molding plaster or cement. Fluid thermosetting or thermoplastic resin is poured into a mold, and additives cause the resin to solidify. Photographic film is made by pouring a fluid solution of resin onto a highly polished metal belt. A thin plastic film remains as the solution evaporates. The casting process is also used to make furniture parts, tabletops, sinks, and acrylic window sheets.
Share with your friends: |