Particle acceleration processes on auroral field lines during major geomagnetic storms



Download 2.76 Mb.
Page2/2
Date05.05.2018
Size2.76 Mb.
#47489
1   2

2. References


Ashour-Abdalla, M., L. M. Zelenyi, J. M. Bosqued, and R. A. Kovrazhkin (1992), Precipitation of fast ion beams from the plasma sheet boundary layer, Geophys. Res. Lett., 19(6), 617–620.


Ashour-Abdalla, M., J. M. Bosqued, M. El-Alaoui, V. Peroomian, L. M. Zelenyi, R. J. Walker, and J. Wright (2005), A stochastic sea: The source of plasma sheet boundary layer ion structures observed by Cluster, J. Geophys. Res., 110, A12221, doi:10.1029/2005JA011183.
Baker, D. N., N. E. Turner, and T. I. Pulkkinen (2001), Energy transport and dissipation in the magnetosphere during geomagnetic storms, J. Atmos. Sol.-Terr. Phys., 63, 421.
Boehm, M. et al. (1999), FAST observations of bouncing ion distributions: Fieldline length measurements, J. Geophys. Res., 104, 2343.
Bosqued, J. M., M. Ashour-Abdalla, M. El Alaoui, V. Peroomian, L. M. Zelenyi, and C. P. Escoubet (1993), Dispersed ion structures at the poleward edge of the auroral oval: Low-altitude observations and numerical modeling, J. Geophys. Res., 98(A11), 19,181.
Cattell, C., M. Linton and I. Roth (1995), The effects of low frequency waves on ion trajectories in the earth’s magnetotail, Geophys. Res. Lett., 22, 3445.
Cattell C., J. Dombeck, W. Peria, R. Strangeway, R. Elphic, and C. Carlson (2003), Fast Auroral Snapshot observations of the dependence of dayside auroral field-aligned currents on solar wind parameters and solar illumination, J. Geophys. Res., 108(A3), 1112, doi:10.1029/2001JA000321.
Cattell, C. J. Dombeck, W. Yusoff, C. Carlson and J. McFadden (2004a), FAST observations of the solar illumination dependence of upflowing electron beams in the auroral zone, J. Geophys. Res., 109, A02209, doi:10.1029/2003JA010075.
Cattell, C. A , M. F. Thomsen, Janet Kozyra, B. Lavraud, J. Borovsky, and J. Dombeck (2004b), Energized Banded Ions During Large Geomagnetic Storms: Comparisons of Observations at Geosynchronous and Low Altitudes, COSPAR04-A-02925.
Cattell, C., J. Dombeck, C. Carlson, and J. McFadden (2006), FAST observations of the solar illumination dependence of downgoing auroral electron beams: Relationship to electron energy flux, J. Geophys. Res., 111, A02201, doi:10.1029/2005JA011337.
Chaston, C. C., J. W. Bonnell, L. M. Peticolas, C. W. Carlson, and J. P. McFadden (2002), Driven Alfven waves and electron acceleration: A FAST case study, Geophys. Res. Lett., 29, 1535, doi:10.1029/2001GL013842.
Chaston, C. C., J. W. Bonnell, C. W. Carlson, and J. P. McFadden (2003), Properties of small-scale Alfvén waves and accelerated electrons from FAST, J. Geophys. Res., 108, 8003, doi:10.1029/2002JA009420.
Chaston C. C., et al. (2005), Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations, J. Geophys. Res., 110, A02211, doi:10.1029/2004JA010483.
Chen, L.-J., C. A. Kletzing, S. Hu, and S. R. Bounds (2005a), Auroral electron dispersion below inverted-V energies: Resonant deceleration and acceleration by Alfvén waves, J. Geophys. Res., 110, doi:10.1029/2005JA011168.
Chen, M. W., Schulz, M., Lyons, L. R., and Gorney, D. J. (1993), Storm time transport of ring current and radiation belt ions, J. Geophys. Res., 98, 3835.
Chen, M. W., M. Schultz, P. C. Anderson, G. Lu, G. Germany, and M. Wüest (2005b), Storm time distributions of diffuse auroral electron energy and X-ray flux: Comparison of drift-loss simulations with observations, J. Geophys. Res., 110, doi:10.1029/2004JA010725.
Daglis, I. A., E. T. Sarris, and B. Wilken (1993), AMPTE/CCE CHEM observations of the ion populations at geosynchronous altitudes, Ann. Geophys.,11, 685.
Dombeck, J. P. (2005), Properties of Alfvén waves in the magnetotail below 9 RE and their relation to auroral acceleration and major geomagnetic storms, Ph.D. Thesis, University of Minnesota, Minneapolis, Minnesota.
Dombeck, J., C. Cattell, J. R. Wygant, A. Keiling, and J. Scudder (2005a), Alfvén waves and Poynting flux observed simultaneously by Polar and FAST in the plasma sheet boundary layer, J. Geophys. Res., 110, A12S90, doi:10.1029/2005JA011269.
Dombeck, J. P., C. Cattell, J. Wygant, A. Keiling, M. Thompsen, and J. Scudder (2005b), Intense Alfven waves well within the plasma sheet during the main phase of the 21 October 1999 major storm and comparison of major storm to non-storm substorm PSBL alfven waves, SA13B-05, Fall AGU.
Dombeck, J., C. Cattell, and J. Wygant (2006) Alfvén wave properties in the PSBL during substorms and major storms from frequency band analysis of Polar data, Ann. Geophys., manuscript in preparation.
Ebihara, Y., Yamauchi, M., Nilsson, H., Lundin, R., and Ejiri, M. (2001), Wedge-like dispersion of subkeV ions: Particle simulation and Viking observation, J. Geophys. Res., 106, 29,571.
Ebihara, Y. et al. (2003), Multiple Discrete-Energy Ion Features in the Inner Magnetosphere: Event of February 9,1998, Annales Geophys.
Engebretson M. J., T. G. Onsager, D. E. Rowland, R. E. Denton, J. L. Posch, C. T. Russell, P. J. Chi, R. L. Arnoldy, B. J. Anderson, H. Fukunishi (2005), On the source of Pc1-2 waves in the plasma mantle, J. Geophys. Res., 110, A06201, doi:10.1029/2004JA010515.
Fennell, J. F., Chen, M. W., Roeder, J. L., Peterson, W. K., Trattner, K. J., Friedel, R., Livi, S.,

Grande, M., Perry, C., Fritz, T. A., and Sheldon, R. (1998), Multiple discrete-energy ion features in the inner magnetosphere: Polar observations, in Physics of Space Plasmas, 15, 395, MIT Center for Theoretical Geo/Cosmo Plasma Physics, Cambridge, MA.


Frahm, R. A., Reiff, P. H., Winningham, J. D. and Burch, J. L.(1986), Banded ion morphology: Main and recovery storm phases, in Ion Acceleration in the Magnetosphere and Ionosphere, Geophys. Monogr. Ser., vol. 38, edited by T. Chang et al., pp. 98-107, AGU, Washington, D. C.
Hirahara, M., Mukai, T., Nagai, T., Kaya, N., Hayakawa, H.,and Fukunishi, H. (1996), Two types of ion energy dispersions observed in the nightside auroral regions during geomagnetically disturbed periods, J. Geophys. Res., 101, 7749.
Hirahara, M., T. Mukai, E. Sagawa, N. Kaya, and H. Hayakawa (1997), Multiple energy-dispersed ion precipitations in the low-latitude auroral oval: Evidence of ExB drift effect and upward flowing ion contribution, J. Geophys. Res., 102, 2513.
Hudson, M.K ,W. Lotko, C.A. Cattell, R. Lysak, I. Roth and M. Temerin (1995), Modeling mesoscale processes in the global geospace system, in The Global Geospace Mission, Space Sci. Reviews, 71, 623.
Kazama, Yoichi. and Mukai, Toshifumi (2003), Multiple energy-dispersed ion signatures in the near-Earth magnetotail: Geotail observation. Geophys. Res. Lett., 30, 1384, doi:10.1029/2002GL016637.
Karimabadi, H., T. B. Sipes, H. White, A. Dmitriev, J. K. Chao, and N. Balac (2006), Reverse engineering algorithms and a survey of machine learning techniques: Derivation of analytical solutions from time series data, pre-print.
Kistler, L. M., Klecker, B., Jordanova, V. K., M®obius, E., Popecki, M. A., Patel, D., Sauvaud, J.-A., R¥eme, H., Di Lellis, A. M., Korth, A., McCarthy, M., Cerulli, R., Bavassano Cattaneo, M.B., Eliasson, L., Carlson, C.W., Parks, G. K., Paschmann, G., Baumjohann, W., and Haerendel,G. (1999), Testing electric field models using ring current ion energy spectra from the Equator-S ion composition (ESIC) instrument, Ann. Geophys., 17, 1611.
Kovrazhkin, R. A., Sauvaud, J. -A., and Delcourt, D. C. (1999), Interball-Auroral observations of 0.1-12keV ion gaps in the diffuse auroral zone, Ann. Geophys., 17, 734.
Kozyra, J. U., A. F. Nagy, and D. W. Slater (1997), High-latitude energy source(s) for stable auroral red arcs, Rev. Geophys, 35, 155.
Kozyra, J. U., M. O. Chandler, D. C. Hamilton, W. K. Peterson, D. M. Klumpar, D. W. Slater, M. J. Buonsanto, and H. C. Carlson (1993), The role of ring current nose events in producing stable auroral red arc intensifications during the main phase: Observations during September 19-24, 1984, equinox transition study, J. Geophys. Res., 98, 9267.
Kozyra, J et al. (2004a), Coupling Processes in the Inner Magnetosphere Associated with Midlatitude Red Auroras during Superstorms, SM12B-03, Fall AGU.
Kozyra, J. et al. (2004b), Superstorms Observations and Insights: Observer Perspective, Huntsville Workshop, Oct.
Li, X., Baker, D. N., Temerin, M., Peterson, W. K., and Fennell, J. F. (2000), Multiple discrete-energy ion features in the inner magnetosphere: Observations and Simulations, Geophys. Res. Lett, 27, 1447.
Liemohn, M. W., Khazanov, G. V., and Kozyra, J. U. (1998), Banded electron structure formation in the inner magnetosphere, Geophys. Res. Lett., 25, 877.
Lopez, Ramon E., Michael Wiltberger and John G. Lyon (2004), Coupling between the solar wind and the magnetosphere during strong driving: MHD simulations, IEEE Trans. Plasma Sci., 32, 1439.
Mauk, B. H. (1986), Quantitative modeling of the ‘convection surge’ mechanism of ion acceleration, J. Geophys. Res., 91, 13,423.
J. P. McFadden, Y.K. Tung, C. W. Carlson, R. J. Strangeway, E. Möbius, and L. M. Kistler (2001), FAST observations of ion outflow associated with magnetic storms, Space Weather, Geophysical Monograph 125, 413.
McFadden, J. P., C. W. Carlson, R. Strangeway, and E. Moebius (2003), Observations of downgoing velocity dispersed O+ and He+ in the cusp during magnetic storms, Geophys. Res. Lett., 30, 1947, doi:10.1029/2003GL017783.
Moore, T. E., W. K. Peterson, C. T. Russell, M. O. Chandler, M. R. Collier, H. L. Collin, P. D. Craven, R. Fitzenreiter, B. L. Giles, and C. J. Pollock (1999), Ionospheric mass ejection in response to a coronal mass ejection, Geophys. Res. Lett., 26, 2339.
Nakajima, A., K. Shiokawa, K. Seki, J. P. McFadden, and C. W. Carlson (2005), Particle and field characteristics of broadband electrons observed by the FAST satellite during geomagnetic storms, SA21A-0283, Fall AGU.
Peterson, W. K., Trattner, K. J., Lennartsson, O. W., Collin, H. L., Baker, D. N., Pulkkinen, T. I.,Toivanen, P. K., Fritz, T. A., Fennell, J. F., and Roeder, J. L.(1998), Imaging the plasma sheet with energetic ions from the Polar satellite, Proc. of ICS-4, Terra Sci. Publishing, Tokyo, 813.
Quinn, J. M., and McIlwain, C. E. (1979), Bouncing ion clusters in the Earth's magnetosphere, J. Geophys.Res., 84, 7365.
Shiokawa, K., K. Yumoto, C.-I. Meng, and G. Reeves (1996), Broadband electrons observed by the DMSP satellites during storm-time substorms, Geophys. Res. Lett., 23, 2529.
Shiokawa, K., C.-I. Meng, G. D. Reeves, F. J. Rich and K. Yumoto (1997), A multievent study of broadband electrons observed by the DMSP satellites and their relation to red aurora observed at midlatitude stations, J. Geophys. Res., 102, 14,253.
Shiokawa, K., T. Ogawa, H. Oya, F. J. Rich, and K. Yumoto (2001), A stable auroral red arc observed over Japan after an interval of very weak solar wind, J. Geophys. Res., 106, 26,901.
Siscoe, G. L., G. M. Erickson, B. U. Ö. Sonnerup, N. C. Maynard, J. A. Schoendorf, K. D. Siebert, D. R. Weimer, W. W. White, and G. R. Wilson (2002), Hill model of transpolar potential saturation: Comparisions with MHD simulations, J. Geophys. Res., 107, 1075, doi:10.1029/2001JA000109.
Strangeway, R. J., R. E. Ergun, Y.-J. Su, C. W. Carlson, and R. C. Elphic (2005), Factors controlling ionospheric outflows as observed at intermediate altitudes, J. Geophys. Res., 110, A03221, doi:10.1029/2004JA010829.
Strangeway, R. J., C. T. Russell, C. W. Carlson, J. P. McFadden, R. E. Ergun, M. Temerin, D. M. Klumpar, W. K. Peterson, and T. E. Moore (2000), Cusp field-aligned currents and ion outflows, J. Geophys. Res., 105, 21,129.
Streed, T., C. Cattell and I. Roth (2000a), Particle tracing in the magnetotail: Dependence on global magnetic field model, UMSI Research Report.
Streed, T., C. Cattell and I. Roth (2000b), Modifications of ion trajectories in the magnetotail due to low frequency waves, UMSI Research Report.
Su Y.-J., S. T. Jones, R. E. Ergun, S. E. Parker (2004), Modeling of field-aligned electron bursts by dispersive Alfvén waves in the dayside auroral region, J. Geophys. Res., 109, A11201, doi:10.1029/2003JA010344.
Thompsen, M. et al. (2004), Energized Ions in the Dayside Magnetosphere During the SEC Events of Late October 2003, SH42A-05, AGU, Spring.
Winningham, J. D., Burch, J. L., and Frahm, R. A. (1984), Bands of ions and angular V's: A conjugate manifestation of ionospheric ion acceleration, J. Geophys. Res., 89, 1749.
Wygant, J. R., et al. (2000), Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora, J. Geophys. Res., 105, 18,675.
Wygant, J. R., et al. (2001), Observations of intense electric and magnetic fields and associated Poynting flux though-out the plasma sheet during major geomagnetic storms, Eos Trans. AGU, 82, Fall Meet. Suppl.
Wygant, J. R., et al. (2002a), Evidence for kinetic Alfvén waves and parallel electron energization at 4-6 RE altitudes in the plasma sheet boundary layer, J. Geophys. Res., 107, 1201, doi:10.1029/2001JA900113.
Wygant, J. R., et al. (2002b), Observations from the Polar and Cluster spacecraft of the structure and dynamics of strong Poynting flux in the plasma sheet during periods of strong magnetic activity, Eos Trans. AGU, 83, Fall Meet. Suppl.
Yamauchi, M., Lundin, R., Eliasson, L., and Norberg, O. (1996), Meso-scale structures of radiation belt/ring current detected by low-energy ions, Adv. Space Res., 17(2), 171.
3. Summary of Personnel and Work Effort



NAME

ROLE

INSTITUTION

Year 1

Year 2

Year 3

C. Cattell

PI

U. Minnesota

4%

4%

4%

J. Dombeck

Co-I

U. Minnesota

42%

42%

42%

4. Facilities and Equipment

The Space Plasma Physics group at the University of Minnesota has a network of Unix desktop machines, including primarily Sun Sparc’s. In addition, there are PCs running Linux, and many Macintosh machines. These are all networked to both color and PostScript printers, and to a VAX server with disk/tape chains, which serves all the ISTP KP files and Geotail, Wind and Polar fields and waves data sets. We have the complete high time resolution FAST data set on CD and the complete Polar and Cluster fields data on CD with appropriate software to access the data. The available computer equipment are appropriate for this project.




5. Budget Justification


UNIVERSITY OF MINNESOTA


Salaries: Based on current salary of named personnel and University rate for ABD (all but dissertation) graduate student.

Fringe rates are 32.8% for IT Professional (J. Dombeck), 20.1% for Professor (Cattell) and 22.5% for ABD graduate student.

Salary increases: Based on 3% per year
Computer costs: Includes computer service contracts, computer supplies and software necessary to the performance of the proposed research.
Travel, domestic: Travel to AGU based on $500. airfare, 5 days at $200/day (SF hotel/food reimbursement rate) and $380 registration fee. Increase of 3%/year


6. Biographical Sketches

C. Cattell, PI


J. Dombeck, Co-I



CYNTHIA A. CATTELL



Address: School of Physics and Astronomy, University of Minnesota

116 Church Street, S. E. Minneapolis, MN 55455



Appointments:

2000-present Professor of Physics, University of Minnesota

1994-2000 Associate Professor of Physics, University of Minnesota

1989-1994 Senior Fellow, Space Sciences Laboratory, Univ. of California, Berkeley



Selected Relevant Publications (from more than 100 refereed articles):

“The Association of Electrostatic Ion Cyclotron Waves, Ion and Electron Beams and Field-Aligned Currents: FAST Observations of An Auroral Zone Crossing Near Midnight”, C. Cattell et al., Geophys. Res. Let., 25, 2053, 1998.

“FAST-Geotail Correlative Studies of Magnetosphere-Ionosphere Coupling in the Nightside Magnetosphere, K. Sigsbee et al., Geophys. Res. Lett.,25, 2077, 1998.

“Pi2 pulsations observed with the Polar satellite and ground stations: Coupling of trapped and propagating fast mode waves to a midlatitude field line,” Keiling, A., Wygant, J. R.,Cattell, C.,Kim, K.-H., Russell, C. T., Milling, D. K.,Temerin, M., Mozer, F. S.,A Kletzing, C. A., J. Geophys. Res.,106, p.25, 891, 2001.

“Evidence for kinetic Alfven waves and parallel electron energization at 4-6 Re altitudes in the plasma sheet boundary,” Wygant, J., A. Keiling,, C. Cattell, R. Lysak, M. Temerin, F. Mozer, C. Kletzing, J. Scudder, A. Streltsov, W. Lotko, and C. Russell,” J. Geophys. Res., 107, NO. A8, 10.1029/2001JA900113, 2002

"Observations of the seasonal dependence of the thermal plasma density in the southern hemisphere auroral zone and polar cap at 1 Re", M. T. Johnson, J. R. Wygant, C. Cattell, F. S. Mozer, M. Temerin, and J. Scudder, J. Geophys. Res., 106, p.19023, 2001.

“FAST observations of discrete electrostatic waves in association with downgoing ion beams in the auroral zone,” C Cattell, L. Johnson, R. Bergmann, D. Klumpar, C. Carlson, J. McFadden , R. Strangeway, R. Ergun, K. Sigsbee, R. Pfaff , J. Geophys. Res., 107, 1238, doi:10.1029/2001JA000254, 2002.

“A comparison of Pi2 pulsations in the inner magnetosphere and magnetic pulsations at geosynchronous orbit,” Kim, K.-H.,Takahashi, K.,Lee, D.-H.,Lin, N., Cattell, C. A., J. Geophys. Res., 106, 18,865, 2001.

 “FAST observations of the dependence of dayside field-aligned currents on solar wind parameters,” C. Cattell, J. Dombeck, W. Peria, R. Strangeway, R. Elphic, C. Carlson, J. Geophys. Res., J. Geophys. Res. , 108,10.1029/2001JA000321, 2003.

“Polar observations of solitary waves at high and low altitudes and comparison to theory,” C. Cattell, J. Crumley, J. Dombeck, C. Kletzing, W. K. Peterson and H. Collin, Adv. Space Res., 28, p. 1631, 2001.

“Large Amplitude Solitary Waves in and near the Earth’s Magnetosphere, Magnetopause and Bow Shock: Polar and Cluster Observations,” C. Cattel1, C. Neiman, J. Dombeck, J. Crumley, J. Wygant, C. A. Kletzing, W. K. Peterson, F.S. Mozer, Mats André, Nonlinear Processes in Geophysics, 10: 13–26, 2003.
‘Correlation of Alfven wave Poynting flux in the plasma sheet at 4-7 Re with ionospheric electron energy flux, A. Keiling, Wygant, J. R.,Cattell, C., W. Peria, G. Parks, M. Temerin, Mozer, F. S., C. Russell and C. Kletzing, J. Geophys. Res., 107, 10.1029/2001JA900140, 2002.

‘Magnetospheric responses to sudden and quasiperiodic solar wind variations ,’

K.-H. Kim, C. A. Cattell, D.-H. Lee, K. Takahashi, K. Yumoto, K. Shiokawa, F. S. Mozer,  M. Andre, J. Geophys. Res.,107, NO. A11, 1406, doi:10.1029/2002JA009342, 2002.

‘FAST observations of of the solar illumination dependence of upflowing electron beams in the auroral zone,’ C. Cattell, J. Dombeck, W. Yusoff, C. Carlson and J. McFadden, J. Geophys. Res., VOL. 109, A02209, doi:10.1029/2003JA010075, 2004

Electrodynamic of substorm-related field line resonance measured with the Polar satellite, A. Keiling, K.-H. Kim, J. R. Wygant, C. Cattell, C. A. Kletzing, and C. T. Russell, J. Geophys. Res.,, 108, A7, 1275, doi:10.1029/2002JA009340, 2003

‘The Global Morphology of Wave Poynting Flux: Powering the Aurora,’ A. Keiling, J. R. Wygant, C. A. Cattell, F. S. Mozer, and C. T. Russell, Science, January 17; 299: 383-386, 2003.

‘Seasonal variations along auroral field lines: Measurements from the Polar spacecraft,’

M. T. Johnson, J. R. Wygant, C. A. Cattell, F. S. Mozer, Geophysical Research Letters, VOL. 30, NO. 6, 1344, doi:10.1029/2002GL015866, 2003.

Enhanced tail electric feld triggered by solar wind pressure impulse, Kim, K.-H., C. A. Cattell, D.-H. Lee, A. Balogh, M. Andre, Y. Khotyaintsev, S. B. Mende, and E. Lee, submitted to Geophysical Research Letters, 2004.

Alfvén waves and Poynting flux observed simultaneously by Polar and FAST in the plasma sheet boundary layer, Dombeck, J., C. Cattell, J. R. Wygant, A. Keiling, and J. Scudder (2005) J. Geophys. Res., 110, A12S90, doi:10.1029/2005JA011269.

Simultaneous ground-based and satellite observations of Pc5 geomagnetic pulsations, S.-K. Sung, K.-H. Kim, D.-H. Lee, C. A. Cattell, M. Andre, and Y. V. Khotyaintsev, s J. Geophys. Res, in press, 2006..

Cattell, C., J. Dombeck, C. Carlson, and J. McFadden (2006), FAST observations of the solar illumination dependence of downgoing auroral electron beams: Relationship to electron energy flux, J. Geophys. Res., 111, A02201, doi:10.1029/2005JA011337.


Professional Activities:

C. Cattell has been a co-investigator on ISEE, Polar, Cluster and FAST and a PI on the AMPS Mission study and many data analysis grants. She has been a member of various advisory committees for Space Physics, including the National Academy of Sciences/Committee on Solar Terrestrial Research (1993-1995) and the NASA Sun-Earth -Connection Advisory Subcommittee (1998-2001), NAS Plasma Sciences Committee (2001-2005) and the SSSC Roadmap Committee (2004-2005). She is a member of the ‘Physics Force’ team-an outreach group doing large scale, exciting Physics demonstration shows for K12 schools and the general public throughout Minnesota.



John P. Dombeck

School of Physics and Astronomy, University of Minnesota

Tate Lab of Physics, 116 Church St. SE, Minneapolis, MN 55455
Current Responsibilities:

John Dombeck has been in the University of Minnesota Space Physics group for the past 9 years, and in his current position as IT Professional for the past 5 years. In addition to his research, his responsibilities include data analysis and development of analysis software for space physics applications, including the Polar, FAST and Cluster missions. He is also responsible for coordination and continuity of the space physics data analysis programming effort at the University of Minnesota and system administration of the group’s data analysis network.


Other Experience:

John has broad science, technical, and management experience, having received a BSEE in 1992 and a BS in Physics in 1995. He has worked in an engineering capacity for Eaton Corporation, developing hardware for the US Navy, as a Failure Analysis Engineer for IBM Corporation, and as a programmer of flood prediction software at the National Weather Service. He also served as the Product Development/Operations Manager for Callnetics Inc., in the real-estate industry, where he was responsible, from concept to live operational maintenance, for the seven member programming and system administration team for a national scale, real-time web and telephone (IVR) based scheduling system.


Science Interest:

His science interests include major storm processes related to the powering of aurora, solitary waves and the connection between solar wind and ionospheric conditions and auroral acceleration processes. He received his PhD in 2005, and has 13 peer-reviewed publications.


Selected Papers:
Dombeck, J., C. Cattell, J. R. Wygant, A. Keiling, and J. Scudder (2005), Alfvén waves and Poynting flux observed simultaneously by Polar and FAST in the plasma sheet boundary layer, J. Geophys. Res., 110, doi:10.1029/2005JA011269.
Keiling, A., G. K. Parks, J. R. Wygant, J. Dombeck, F. S. Mozer, C. T. Russell, A. V. Streltsov, and W. Lotko (2005), Some properties of Alfvén waves: Observations in the tail lobes and the plasma sheet boundary layer, J. Geophys. Res., 110, doi:10.1029/2004JA010907.
Cattell, C., J. Dombeck, W. Yusof, C. Carlson, J. McFadden (2004), FAST observations of the solar illumination dependence of upflowing electron beams in the auroral zone, J. Geophys. Res., 109, doi:10.1029/2003JA010075.
Cattell, C., J. Dombeck, W. Peria, R. Strangeway, R. Elphic, C. Carlson (2003), Fast Auroral Snapshot observations of the dependence of dayside auroral field-aligned currents on solar wind parameters and solar illumination, J. Geophys. Res., 108, doi:10.1029/2001JA000321.
Dombeck, J., C. Cattell, J. Crumley, W. K. Peterson, H. L. Collin, and C. Kletzing (2001), Observed trends in auroral zone ion mode solitary wave structure characteristics using data from Polar, J. Geophys. Res., 106, 19,013.

5. Co-I and/or Collaborator Commitments


Michelle Thompsen, Collaborator


Janet Kozyra, Collaborator

John Dombeck, Co-I









8. Current and Pending Support

Cynthia A. Cattell Current and Pending Support
Current (PI):
NASA FAST (subcontract from UCB) Data analysis

02/1/2005-1/31/2006 $69,000

Commitment: 4%
NASA SEC/GI: “Cross-scale coupling at the Earth's magnetosphere: Cluster and Polar studies”

4/1//04-3/31/07 Proposed: $288, 680.

Commitment: 12.5%
Pending:
NASA Solar/Heliosphere: “Microphysical processes at interplanetary shocks”

8/1/06-7/31/09 Proposed: $332,997

Commitment: 8.3%
NASA HGI: “Microphysical processes at interplanetary shocks”

2/1/07-1/31/10 Proposed: $332,997

Commitment: 8.3%
NASA HGI: “Particle acceleration processes on auroral field lines during major geomagnetic storms” (this proposal)

2/1/07-1/31/10 Proposed: $378,009.

Commitment: 4%
Pending (Co-I):
NASA LWS/RBSP: J. Wygant, P.I. - “Electric Field And Search Coil (EFASC) Instrument Suite for the Radiation Belt Storm Probe Mission”

4/1/06-9/2014 Proposed: $22.8M

Commitment: 6%
NASA MMS/IDS: H. Karamabadi, PI-“An integrated approach to mission planning, operation and science of MMS: Theory, data analysis and Instrumentation”

5/1/06-9/30/2016 Proposed: $908,004.

Commitment: 8.3%

Current and Pending Research Support for Dr. J. Dombeck

No Current Awards


Pending Support:

NASA Co-I

NASA HGI: C. Cattell, PI- “Particle acceleration processes on auroral field lines during major geomagnetic storms”(this proposal)

2/1/07-1/31/10 Proposed: $378,009.



Commitment: 42%



Download 2.76 Mb.

Share with your friends:
1   2




The database is protected by copyright ©ininet.org 2024
send message

    Main page