Proposal submission instructions



Download 229.78 Kb.
Page6/7
Date05.08.2017
Size229.78 Kb.
#26428
1   2   3   4   5   6   7

2. Furthermore, local defects are known to provide points of stress concentration that can locally serve as the "weakest link" in the polymer system, leading to premature failure.

3. Despite the central importance of the surface treatment in these systems, there is currently no commercially available method for locally (<100µm) measuring the quality of the polymer-substrate interaction (1) during curing (initial strength) and (2) during aging under hot/wet conditions (e.g., in liquid water at 60ºC). There are, however, a few existing techniques that can likely be modified for such measurements including: modulated microscopy techniques, surface forces apparatus techniques, and small-scale mechanical testing techniques. Modulated scanning probe measurements using lock-in techniques[4] could potentially be used to monitor contact stiffness in situ. Additionally, the surface force apparatus technique[5] has been developed to the point that it can be used to monitor adhesive forces within various liquid environments, making it an option as well. Finally, micron-scale mechanical testing, which was developed for solder testing may be applicable as well. Thus, we seek development of novel techniques or novel use of existing instruments that can be used to measure the quality of the interface (e.g., adhesion, interfacial shear strength, contact stiffness, or some other acceptable metric) both during curing and over time (after cure) under hot/wet conditions. Such a method would allow for demonstration of the utility of new surface treatments, allow for simulation of local defects, and provide a means of evaluating strategies to mitigate defect formation.

PHASE I: The offeror(s) shall develop a technique to monitor the change in the interface quality during polymer curing. The offeror(s) shall demonstrate the use of this method to measure interface quality during room temperature and heated (>50ºC) curing of a model substrate/resin system. The suggested model substrate is aluminum oxide, and the suggested model resin is a stoichiometric cure of diglycidyl ether of bisphenol A and Jeffamine® D230 - see properties in Tables 3 and 4 of Lenhart et al [7]. The offeror(s) shall also develop a technique using the same instrument to measure the change in the quality of the interface of this same model substrate/resin system as a function of time in the presence of liquid water at the interface in separate tests at room temperature and at 60ºC for at least one week each.

PHASE II: The offeror(s) shall implement the method developed in Phase I to investigate the influence of multiple factors on initial strength of the interface and the durability (hot/wet testing) using the chosen model system. These factors will include: (1) surface roughness (RMS roughnesses of ~10nm to ~1µm), (2) chemical treatment (e.g., etches in various acids), (3) functionalization (e.g., silane coupling agents like 3-aminopropyltriethoxysilane and 3-glycidoxypropyltriethoxysilane). The offeror(s) shall extend the use of the method to determine the influence of localized defects (e.g., large/sharp surface asperities or air bubbles). The offeror(s) will validate their results against lap-shear tests according to ASTM D1002-10 using the same resin and a comparable substrate. In addition, the offeror(s) will demonstrate the utility of the technique on substrates used in other systems of interest to the military that require polymer encapsulation. Examples include substrates similar to those encountered in glass-fiber reinforced composites (e.g., silicon oxide), and substrates in electronics applications (e.g., indium tin oxide).

PHASE III DUAL USE APPLICATIONS: The offeror is expected to aggressively pursue opportunities to market the method developed herein for use in evaluating and testing adhesives, surface treatments, coupling agents, passivation methods, and substrate preparation methods for adhesive systems, fiber reinforced composite applications, and electronic encapsulants in both military and commercial applications. Of particular interest is the establishment of an industry-wide standard method (e.g., ASTM or equivalent) for predicting the success or failure of proposed changes in surface preparation methods in meeting military specifications.

REFERENCES:

1. Jensen, R. E.; McKnight, S. H.; Quesenberry, M. J. Strength and Durability of Glass Fiber Composites Treated with Multicomponent Sizing Formulations; Laboratory, U. S. A. R.2002.

2. Bradley, W. L.; Grant, T. S. The effect of the moisture absorption on the interfacial strength of polymeric matrix composites. Journal of Materials Science 30 (21), 5537-5542.

3. Hobbiebrunken, T.; Fiedler, B.; Hojo, M.; Tanaka, M. Experimental determination of the true epoxy resin strength using micro-scaled specimens. Composites Part A: Applied Science and Manufacturing 2007, 38 (3), 814-818.

4. Sills, S.; Overney, R. M.; Chau, W.; Lee, V. Y.; Miller, R. D.; Frommer, J. Interfacial glass transition profiles in ultrathin, spin cast polymer films. Journal of Chemical Physics 2004, 120 (11), 5334-5338.

5. Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K.; Zeng, H. Recent advances in the surface forces apparatus (SFA) technique. Reports on Progress in Physics 2010, 73 (3).

6. Kwon, S.; Lee, Y.; Han, B.; Asme. Advanced micro shear testing for solder alloy using direct local measurement; Amer Soc Mechanical Engineers: New York, 2003. p 537-542.

7. Bain, E. D.; Knorr, D. B.; Richardson, A. D.; Masser, K. A.; Yu, J.; Lenhart, J. L. Failure processes governing high-rate impact resistance of epoxy resins filled with core-shell rubber nanoparticles. Journal of Materials Science 2015, 51 (5), 2347-2370.

KEYWORDS: Surface treatments, composites, manufacturing processes, fabrication, surface chemistry, coupling agent, durability, adhesion

A17A-T017

TITLE: Dismounted Soldier Positioning, Navigation and Timing (PNT) System Initialization

TECHNOLOGY AREA(S): Sensors

The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), which controls the export and import of defense-related material and services. Offerors must disclose any proposed use of foreign nationals, their country of origin, and what tasks each would accomplish in the statement of work in accordance with section 5.4.c.(8) of the Announcement.

OBJECTIVE: Develop and demonstrate techniques and algorithms to accomplish the initialization of Dismounted Navigation Systems while en route within a tactical vehicle permitting the transition from the vehicle to the fight completely without the need to manually calibrate or initialize the navigation system. Currently military Global Positioning System (GPS) receivers can take a few minutes to acquire satellites and the alignment of Inertial Measurement Units (IMU) up to four minutes, which must occur outside the vehicle, in plain sight, all while standing completely still.

DESCRIPTION: This topic will enable automatic initialization and calibration of the dismounted soldier PNT system to occur within the tactical vehicle while en route, by providing techniques and algorithms that make use of information available from the vehicle's navigation, GPS, IMU, vision and other systems, and by using collaborative navigation techniques using information from other vehicles and other dismounted soldiers' navigation systems. The developed algorithms and techniques will enable continued OPTEMPO (not delaying the mission) and will not add to the size, weight, power, or cost of the soldier system.

PHASE I: The vendor will develop a system architecture and conduct necessary tradeoff studies proposed by the vendor that contributes to the architecture and prove feasibility of the proposed approach. It is encouraged that the vendors demonstrate this technology using the CERDEC Warfighter's Integrated Navigation System (WINS) as a testbed for demonstration in Phase II.

PHASE II: Design and build the prototype modifications to a dismounted navigation system performance for demonstration in several varied environments (benign open terrain, wooded site, urban, and in GPS challenged environments). The prototype may include the use/modification of devices already installed on the vehicle or provision of a minimal set of equipment for installation within the vehicle for use while en route to the mission location. It is encouraged that the vendors demonstrate this technology using the CERDEC Warfighter's Integrated Navigation System (WINS) as a testbed for demonstration in Phase II.

PHASE III DUAL USE APPLICATIONS: The vendor will commercialize the system. Military application of this topic is directly applicable to the dismounted soldier via the Assured PNT program, subprogram Dismounted PNT. Commercial applications of this technology would be also directly applicable to First Responders (fire fighters, police, security, and other emergency units).

REFERENCES:

1. Vision-aided Inertial Navigation with Unknown Camera-IMU Calibration, Tue-Cuong, Dong-Si and Anastasios I. Mourikis, Dept. of Electrical Engineering, University of California, Riverside, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems

2. Vision and IMU Data Fusion: Closed-Form Solutions for Attitude, Speed, Absolute Scale, and Bias Determination, Agostino Martinelli, IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012

3. Patent Application, Number US8718935 B2, Navigational system initialization system, process, and arrangement

KEYWORDS: Positioning, Navigation, PNT, dismounted soldier, inertial, GPS, vision-aided

A17A-T018

TITLE: Novel Robust IR Scene Projector Technology

TECHNOLOGY AREA(S): Sensors

OBJECTIVE: The IRSP system will project accurate, dynamic, realistic infrared scenes of various targets that will provide repeatable test and evaluation (T&E) of sensors employing state-of-the-art infrared imaging technology.

DESCRIPTION: Infrared scene projectors are a highly reliable and cost effective method for the laboratory and field testing of infrared sensors. As the field continues to mature, there is a need for more adaptable scene projectors, for operation in broadband, including all the IR wavelength regimes (SWIR, MWIR, and LWIR). A variety of new scene projection technologies are being developed that can provide a more efficient, robust alternative to resistive array projectors. The Sensors and Countermeasures labs at I2WD EWAGS Division require Scene projection technology to test and evaluate systems and develop new techniques for threat detection and countermeasure. Investment into further maturing these novel scene projector designs to meet our needs for a robust and ruggedized application is critical in enabling full capabilities for development, analysis and test.

Quantum Dots (QDs) are nanometer-sized particles, usually made of semiconductors, metals, or dielectrics with unique optical, electronic and chemical properties, depending on their size and shape. The small size of these particles is of the same size as the extent of the electron wave-function in the material, causing electrons to be localized/confined. This leads to an increase in bandgap energies of the materials. As a result, Quantum Dots exhibit a shift of optical absorption and emission properties to higher energies compared to their bulk values. This shift is tunable by controlling particle size. The localization of the electrons and holes in the QD increases the efficiency of these optical transitions making QDs more efficient optical materials. Quantum Dot materials can be suspended in various colloidal solutions and literally be "printed" onto a "color conversion layer" that can be attached to a COTS high performance LCD display. The quantum dot materials can be controlled such that the light emitted from the standard display causes the dots to emit in the Infrared Spectral bands of interest, which is a game changer for lower cost, and robust IR Scene Projection technology. This technology can be expanded to allow for multiple color MWIR displays, all tunable to specific wavelengths of interest. This highly supports future 2-color and multi-spectral scene projector technology which can support future sensor and countermeasure system laboratory efforts.

Light Emitting Diodes (LEDs) are light producing semiconductors. Super-lattice Light Emitting Diodes (SLEDs) is a periodic structure containing multiple layers of these diodes. SLEDs are grown using molecular beam epitaxy (MBE) on group III-V material substrates. They are fabricated into arrays with wet-chemical etching, gold metallization, and Silicon Nitride isolation. Selectivity of emission bandwidth and peak emission wavelength of SLEDs are achieved by bandgap engineering. These devices exhibit fast rise/fall time providing higher frame rates and have a high radiative efficiency, offering the potential for higher apparent temperatures. Improvements to the existing two color SLED technology would lead to multiple IR emission bands, higher apparent temperature, increased dynamic range, faster frame rates, and improved thermal performance. This also highly supports the future 2-color and multi-spectral scene projector technology progression efforts.

The combination of these two approaches bridges the gaps in the IR continuum, allowing for a more complete range of operation, which provides the basis for more thorough testing and less chance of technological gaps when facing forward technological progression.

PHASE I: Study feasibility of novel scene projection approaches, tuned specifically toward single and dual color MWIR scene projectors. Materials, efficiency, manufacturability, stability, and ruggedness on a flight motion table are all considerations. Specific designs and test results for mature implementation of new scene projector will result.

PHASE II: As informed by Phase I, build a prototype single or dual color MWIR scene projector. These prototypes would include any software items needed to test and develop IR models and scenes using this technology, which can then be used to stimulate IR sensors and countermeasure systems.

PHASE III DUAL USE APPLICATIONS: These projectors, once productionized, can support multiple Government test labs throughout DoD as well as Programs of Record.

REFERENCES:

1. "TPE-II INAS/GASB SUPERLATTICE LEDS: APPLICATIONS FOR INFRARED SCENE PROJECTOR SYSTEMS", Dennis Thomas Norton, Jr. Physics in the Graduate College of The University of Iowa. December 2013 http://ir.uiowa.edu/cgi/viewcontent.cgi?article=5031&context=etd

2. "MICRODISPLAYS: Infrared scene projector provides realistic threat scenarios". JULIA RENTZ DUPUIS. 07/25/2009. http://www.laserfocusworld.com/articles/2009/07/microdisplays-infrared-scene-projector-provides-realistic-threat-scenarios.html

KEYWORDS: infrared imaging, infrared imaging scene projector, threat detection, sensors, Quantum Dots



A17A-T019

TITLE: Artificial Intelligence/Machine Learning to Improve Maneuver of Robotic/Autonomous Systems

TECHNOLOGY AREA(S): Sensors

OBJECTIVE: The goal of this topic would be to improve off-road autonomous mobility in military environments as mentioned above using relatively low-cost or COTS sensors while combining them with novel memory techniques.

DESCRIPTION: Recent advancements in sensors and processing have significantly improved the capabilities of autonomous ground vehicles, particularly in the commercial market. The military environment poses several unique problems to Robotic Autonomous Systems (RAS) including incomplete or insufficient map data, dynamically changing terrains, and Global Positioning System (GPS)/communications denied environments that could increase the time to complete a mission or cause mission failure. Novel processing algorithms that include machine learning and artificial intelligence could increase the speed of ground RAS and decrease the likelihood of mission failure. They may require "training" of the RAS through either supervised or unsupervised techniques on a representative area.

PHASE I: The vendor will conduct necessary tradeoff studies/analyses of conventional versus proposed techniques of robotic maneuver to prove feasibility and capability of the proposed approach.

PHASE II: Design and build a prototype ground or air robotic navigation system with increased capability for demonstration in several varied environments (benign open terrain, wooded site, urban, indoor, and in GPS challenged environments).

PHASE III DUAL USE APPLICATIONS: The vendor will commercialize the system. Military application of this topic is directly applicable to Army robotics efforts via the Assured PNT program, subprogram Mounted PNT. Commercial applications of this technology would be also directly applicable to First Responders (fire fighters, police, security, and other emergency units), hobbyists, and for telecommunications/infrastructure inspection.

REFERENCES:

1. Pieter Abbeel, Adam Coates, Timothy Hunter, Morgan Quigley and Andrew Ng, “Helicopters teach themselves to do aerial maneuvers", http://news.stanford.edu/news/2008/september10/helicopter-091008.html Proceedings of the 20th annual conference on Computer graphics and interactive techniques, p.73-80, August 2008

2. Sergey Levine, Peter Pastor, Alex Krizhevsky, Deirdre Quillen; Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, arXiv:1603.02199, http://arxiv.org/abs/1603.0219, Mar 2016.

KEYWORDS: Autonomy, Artificial Intelligence, Machine Learning, Positioning, Navigation, PNT

A17A-T020

TITLE: Bioaerosol Detector Wide Area Network

TECHNOLOGY AREA(S): Chemical/Biological Defense

OBJECTIVE: Develop a novel real-time fusion approach for a bioaerosol detector network with emphasis on high value target protection.

DESCRIPTION: Persistent wide area early warning and threat localization for biological warfare agents (BWAs) represents a significant technology gap for DoD. Current biothreat monitoring capabilities are selective, but expensive and were designed to be relevant for small targeted areas. Network and communications technologies have advanced over past few decades to where it is feasible to foster more cost effective approaches to widen the effective surveillance area and to enhance Force and Asset Protection through early warning situational awareness across large geographical regions. The network communication architecture and software are being matured and advanced in Industry and Consumer Electronics as evidence by Google, Amazon, online gaming, and the DARPA SIGMA program. Turning disparate sensor data into actionable information for decision makers requires rapid, intelligent access to huge data sets of real-time information. This topic is soliciting a smart-data-fusion approach for Big Data problems comprised of a variety of data types from distributed BWA sensors, triggers, and security cameras. Sensors should be networked via a "self-discovery" network.

This topic is soliciting a data fusion approach to be applied to a distributed point bioaerosol detector network. Targets are aerosolized BWAs in the 10,000 ACPLA concentration range or less. The approach must demonstrate significant enhancements in confidence levels associated with lower cost, less sensitivity, and less specificity through the intelligent aggregation and usage of large detector data networks. Network level Pd of threat/non-threat should be greater than 90% with a MTBFA of 24 hours (threshold) and 168 hours (objective). The fusion architecture is ideally agnostic to bioaerosol detector datatype. However, the emphasis should be directed toward massive networking of inexpensive BWA sensors, including additional data from non-specific sensors such as surveillance cameras, etc. The anticipated deployment of the network includes forward operating bases, urban environments, large public gathering venues such as arenas or stadiums parts, and public transportation hubs. This topic addresses the new state-of-the-art in network/smart-ware communications electronics and software. This topic is a call for new mathematical algorithms and approaches to handle Very Large Disparate Data sets, and to produce actionable information in a timely and cost effective manner. An example of the approach requested can be seen in the DARPA Sigma program that requires immense, real-time data fusion from disparate sensor networks of 10,000+ sensors, along with input from crowd sourcing, and social media.

While BWA point detectors with sufficient sensitivity and specificity are currently available, wide area (high volume) distributed deployment of these sensors is currently prohibitive with regard to cost and logistics. In essence, these point detectors cannot be deployed with adequate density to enable wide area early warning. New approaches based on aggregating the data from an array of distributed low-cost, low-specificity point biological sensors in an intelligent fusion network has the potential to fill this technology gap.

PHASE I: Demonstrate the feasibility of the proposed network fusion approach using simulated and/or company furnished data. Data (simulated or real) should contain at least 3 different types of data with 100, 1000, 10,000, 100,000 simulated and/or collected data set inputs. Demonstrate Pd of threat/non-threat greater than 90% and MTBFA of at least 24 hours. Quantify performance as it scales with the number/density of detectors and with the use of orthogonal data (e.g. the non-specific sensors). Generate requirements for the sensor network infrastructure based on the demonstrated approach. Attractive features include low-cost, low-specificity biological sensors, intelligent fusion network, interoperability via IP addressing and XML messaging, along with new mathematical methods and algorithms.

PHASE II: Demonstrate the network fusion approach using a limited network of point bioaerosol detectors and non-specific sensors in a series of representative environments. Demonstrate that the approach can be scaled up to a large number of sensor inputs (greater than 10,000). Plug-in ports to the network should be sensor agnostic. A common device driver communication protocol should be established so that the network can accept any sensor in the future. A companion Software Development Kit should be developed to enable easy device driver development so that other sensors can “plug and play" into the sensor net. Validate achievement of Pd/MTBFA requirements. Deliver all hardware and software developed under this effort to the government including documented source code and manuals. Generate transition plans.

PHASE III DUAL USE APPLICATIONS: Research and development during Phase III efforts will be directed toward refining final deployable designs for the Bioaerosol Detector Wide Area Network. Design modifications based on results from tests conducted during Phase II will be incorporated. Manufacturability specific to the Joint Chemical and Biological Defense Program CONOPS and end-user requirements will be examined. Transition activities will include extensive field testing, sensor incorporation, and pre-production efforts, including vendor qualification and development of user documentation, manuals, and manufacturing processing and procedures. The network fusion capability, when combined with suitable low-cost point bioaerosol detectors, could be widely deployed in both DoD and DHS installations. The combined solution will not only detect but will also localize the bioaerosol, thereby providing key information for both evasion during and triage after the event. Transition activities will include extensive field testing and validation in a wide range of operational environments. If successful, the hardware and software developed under this topic could be deployed for high volume sensor networks (greater than 10,000) in both DoD and DHS installations. Installations could include forward operating bases, large public gathering venues such as arenas, stadiums, parks, and public transportation hubs. Low cost biodetection systems will have application in food safety and food processing.


Directory: osbp -> sbir -> solicitations
solicitations -> Army sbir 09. 1 Proposal submission instructions dod small Business Innovation (sbir) Program
solicitations -> Navy sbir fy09. 1 Proposal submission instructions
solicitations -> Army 16. 3 Small Business Innovation Research (sbir) Proposal Submission Instructions
solicitations -> Air force 12. 1 Small Business Innovation Research (sbir) Proposal Submission Instructions
solicitations -> Army 14. 1 Small Business Innovation Research (sbir) Proposal Submission Instructions
solicitations -> Navy small business innovation research program submitting Proposals on Navy Topics
solicitations -> Navy small business innovation research program
solicitations -> Armament research, development and engineering center
solicitations -> Army 17. 1 Small Business Innovation Research (sbir) Proposal Submission Instructions
solicitations -> Navy 11. 3 Small Business Innovation Research (sbir) Proposal Submission Instructions

Download 229.78 Kb.

Share with your friends:
1   2   3   4   5   6   7




The database is protected by copyright ©ininet.org 2024
send message

    Main page