Proposal submission instructions



Download 229.78 Kb.
Page7/7
Date05.08.2017
Size229.78 Kb.
#26428
1   2   3   4   5   6   7

REFERENCES:

1. Dieter Fox, Jeffery Hightower, and Lin Liao, “Bayesian filters for location estimation"‚ IEEE Pervasive Computing, July-September 2003.

2. B.R. Cosofret, K. Shokhirev, M. King, B. Harris, R. Dubord, and M. Lusoto, “Centralized and Collaborative Algorithms for Detection and Localization of Radiological Threats in Urban Environments", International Symposium on Spectral Sensing Research, June 21-24, 2010.

3. M.J. King, B. Harris, M. Toolin, R. M. DuBord, V.J. Skowronski, M.A. LuSoto, R.J. Estep, S.M. Brennan, B.R. Cosofret, and K.N. Shokhirev, “An Urban Environment Simulation Framework for Evaluating Novel Distributed Radiation Detection Architectures", IEEE-HST 2010, Submission No. 28, September 2010.

4. http://nextbigfuture.com/2015/09/darpa-has-cheap-network-of-radiation.html

5. Zhang Honghai and Jennifer C. Hou, “Maintaining Sensing Coverage and Connectivity in Large Sensor Networks", Ad Hoc & Sensor Wireless Networks, vol. 1, pp. 89-124, March 3, 2005.

6. Adwitiya Sinha and Daya Krishan Lobiyal, “Performance evaluation of data aggregation for cluster-based wireless sensor network"‚ Human-centric Computing and Information Sciences, vol. 3, no. 1, pp.1-17, 2013.

7. T.P. Lambrou, C.C. Anastasiou, C.G. Panayiotou, and M.M. Polycarpou, “A Low-Cost Sensor Network for Real-Time Monitoring and Contamination Detection in Drinking Water Distribution Systems", IEEE Sensors Journal, vol. 14, no. 8, pp 2765-2772, 2014.

KEYWORDS: Wide Area Network, Biothreat Detection, Large Data Sets, Large Sensor Network, Sensor Fusion



A17A-T021

TITLE: Anticipatory Analytics for Environmental Stressors

TECHNOLOGY AREA(S): Information Systems

OBJECTIVE: Develop a data analysis platform to explore linkages between environmental stress and security. The objective is to develop a platform that can integrate geospatial and temporal data for a range of environmental stressors while contextualizing them with information about local communities including properties such as coping capacity, adaptive capacity, and resilience. The platform should enable linkages between environmental stressors and security outcomes including conflict, political instability, and population displacement. This platform should be implementable as a community tool that can be easily integrated into existing Engineer Research and Development Center (ERDC) systems and analyses to support military reach-back, training, and planning within Combatant Commands and Army Service Component Commands.

DESCRIPTION: Environmental stresses such as droughts, floods, storms, earthquakes, wildfires, pest infestations, volcanic eruptions, and infectious disease vectors are often key contributing factors to defense interventions, including humanitarian response, counter insurgency, and border control. The frequency, severity, and co-occurrence of such stresses appear to be increasing relative to past experience. Phase I planning activities need to incorporate systematic monitoring and forecasting of environmental stress and their impacts on security outcomes over multiple time scales ranging from hours to decades. While data on environmental stresses and security outcomes (e.g., conflict, political instability, supply chain disruptions, internal displacement, and external migration) are improving, these data are from disparate sources, have widely varying formats and structures, and are updated on different schedules. Tools to analyze such data in an integrated manner for predictive purposes are also lacking. Those that exist are typically not available as shared community resources. To address these challenges, we require both conceptual and technical innovations. The conceptual innovations are to develop theoretical frameworks regarding linkages between environmental stressors and security outcomes that can be quantitatively tested in both forensic and predictive contexts. The technical innovations required are to build a data harvesting, integration, and analysis platform that can support the development and deployment of anticipatory models linking environmental stressors with security outcomes, and make this platform available as a shared community resource.

PHASE I: Develop an analytical framework for tracing multiple environmental stressors through their impact on human activity and key security outcomes. Demonstrate ability to harvest and integrate multiple classes of data in order to anticipate any disruptions and likely outcomes in at least one of the following sectors: agriculture, energy or public health. Forecasts should be at least at the subnational level and over monthly time scales. Framework must be implemented in a proof of concept software tool, with a design for scaling analysis to both decadal and daily time scales and local (county-level) resolution.

PHASE II: Develop open-source framework for quantitative analysis of the impact of multiple environmental stressors on social vulnerability, potential for conflict, and mass migration. Framework must support anticipatory models for disruptions at local and national scales from weekly to seasonal time scales and include impacts in multiple sectors. Provide validation of the framework based on historical analyses of previous environmentally-driven disruption, social adaptation, and political change.

PHASE III DUAL USE APPLICATIONS: Corporations have many of the same needs to monitor and forecast environmental stressors as the military due to concerns about supply chains, market behavior, and political change. This provides significant commercial potential in addition to that of supplying the defense need.

REFERENCES:

1. National Research Council (2013). Climate and Social Stress: Implications for Security Analysis. John D. Steinbruner, Paul C. Stern, and Jo L. Husbands, Editors; Committee on Assessing the Impact of Climate Change on Social and Political Stresses; Board on Environmental Change and Society; Division of Behavioral and Social Sciences and Education. DOI: 10.17226/14682

2. Defense Science Board (2011). Trends and Implications of Climate Change for National and International Security

KEYWORDS: environmental security, data analytics, socio-hydrology, climate change, vulnerability, conflict anticipation

A17A-T022

TITLE: Biomechanical Rat Testing Device to Validate Primary Blast Loading Conditions for Mild Traumatic Brain Injury

TECHNOLOGY AREA(S): Biomedical

OBJECTIVE: Develop a biomechanical surrogate of a rat model that can accurately measure shock overpressure conditions. This surrogate device will be used in live-fire testing as well as many different types of experimental shock tubes in laboratories to gauge the fidelity of the experimental technique in simulating field conditions. The device will also measure the actual biomechanical loading experienced by the experimental animals so that the research results of that particular laboratory can then be cross-correlated across different test conditions and research groups.

DESCRIPTION: Blast induced neurotrauma (BINT) has been recognized as a major medical problem among US service members. As high as 20% of the total 1.6 Million deployed members may be potentially suffering from TBI, especially mild TBI. This number is likely to grow significantly as the returning warfighters assimilate into the general population and experience the continuing long-term sequelae of mild TBI, ranging from post-concussion syndrome to possible neurodegenerative diseases. This blast type of loading is expected to continue in the near future due to the asymmetrical nature of warfare in urban conditions. DOD, VA and other government agencies have sponsored many projects to understand the origin of, to identify the mechanisms of, and to offer prognostic, diagnostic, therapeutic solutions to this blast induced mild TBI. Large volumes of data on experimental animal models (mostly rats) on BINT are being published with a range of biological, biochemical, and biomedical observations. However, the data cannot be collated or correlated with each other, since the biomechanical loading condition of the rodents are very different among the various laboratories and not consistent. Thus, despite the heavy investments from the DOD and significant research effort expended on the topic, no substantive progress has been made. Each of the results by themselves may be useful but collectively there is no progress, as cross-laboratory validation of input conditions is currently not possible. This proposed idea of developing a biomechanically accurate rat model, which can precisely measure the loading conditions for each and every experimental animal model will allow correlation and cross-validation of research outcomes of different studies (remove that deficit). Blasts during explosions generate shock waves that can be precisely measured in terms of blast overpressure-time loading pulse. Such a pulse is characterized by a very sharp increase in overpressure within a microsecond followed by an exponentially decaying pressure with duration of a few milliseconds. Using the right shock wave measuring pressure transducer with at least a 1 MHz frequency, the device can characterize the pulse. The pulse measured should be a pure shock wave described by a Friedlander wave with overpressures in the range of 30-450 kPa and duration of 3-7 msec. Outside of these ranges, even if it is a pure shock wave, it is not field-relevant to cause mild TBI. The device shall be anthropometrically accurate in terms of shape, size, weight and weight distribution. The device shall accurately measure both pressure and acceleration pulse at different points in the rat. The device shall also be capable of being placed in most of the experimental set ups used by different researcher as an assessment tool.


Currently, blast experimental animal models are tested in: live-fire testing; compressed-gas blast tube; small explosion shock tube; and combustion shock tube. These tubes vary from about half an inch circular tubes to 29 in square sections-range from 3 feet in length to 40 feet. Experimental rats are placed in metallic or wired cages, hung in baskets, simply suspended from the top, or placed at the end of a long rod or securely placed on aerodynamic rigid plates and oriented in line with, or normal to or at angle to shock waves. The proposed surrogate device shall be able to be placed in all the above conditions and should be capable of repeated exposures to the range of pressure and durations along with possible jet winds.

PHASE I: Design a concept for a rat testing device that can measure the actual biomechanical loading conditions in experimental blast injury animal models. In this phase, various geometric, material and manufacturing constraints for the device will be defined to meet the test conditions for use in live-fire and shock tube experiments. The number and type of measurement tools (e.g. pressure sensors, their locations, attachment methods) and accompanying electronics (hardware, software, data acquisition devices, video images,) and software needed to achieve proper calibration of the device will be identified. The calibration procedure and the ability to identify non-ideal biomechanical blast conditions will be delineated.

Phase I deliverables will include:

- Development of the specification for the rat test device


- Computer model (e.g. 3D CAD drawing) of the device showing various part drawings, measurement tools, locations and wiring diagram
- Sample working model of the device (e.g. 3D printer)
- Innovation points and the various methods to improve the use of the device under a variety of loading conditions

PHASE II: Fabricate the rat testing device using the actual specification developed in Phase I. Using the right number and type of pressure and acceleration sensors, correlate the measured values with those computed theoretically (e.g. ConWep). Conduct tests in a well-calibrated shock tube model where both static and dynamic pressures are known a priori. The tests shall span the range of pressure from 30 kPa to 450 kPa in increments of 30 kPa and duration of 3 msec, 5 msec and 7 msec. The rat model should be easily secured similar to the live rat model in experiments. The device should be rugged enough for repeated (multiple) testing and should allow for non-ideal jet wind loading conditions.

Develop, test and demonstrate that the prototype rat test device can be deployed in actual conditions to measure and identify the right biomechanical loading conditions, or, at the very least, accurately determine what the conditions were that the animal models were subjected to thus facilitating cross-comparison of the results from (other) laboratories.

PHASE III DUAL USE APPLICATIONS: In this phase, funds may be sought from the private sector for further development and production of test devices for use in various laboratories as well as for shock tube manufacturers. The device can also be used by government, academic or commercial sector researchers in developing better shock tubes or fine tune their tubes based on test results. The device, along with the instrumentation, hardware/software and test protocols can be patented and commercially licensed for use. It is also expected that the awardees may extend this concept and device to other injury models.

REFERENCES:

1. James H. Stuhmiller, Blast injury: Translating research into operational medicine, Borden Institute, https://blastinjuryresearch.amedd.army.mil/index.cfm?f=application.publications

2. Firas Kobeissy et. al, Assessing Neuro-Systemic and Behavioral Components in the Pathophysiology of Blast-Related Brain Injury, Frontiers in Neurology, 10.3389/feneur.2013.00186, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836009/

3. A. Sundaramurthy et. al, A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube, Frontiers in Neurology, 10.3389/fneur.2014.00253, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251450/

4. R. K. Gupta et. al, Mathematical Models of blast-induced TBI: Current status, challenges and prospects, Frontiers in Neurology, 10.3389/fneur.2013.00059, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667273/

KEYWORDS: Blast injury, Shock tubes, Traumatic Brain injury, Animal models, Test devices, Assessment tools, Mechanical surrogates



A17A-T023

TITLE: Field Verification of Micro/Ultra Filtration

TECHNOLOGY AREA(S): Human Systems

OBJECTIVE: Design a novel approach and deliver a device that will verify micro/ultra filtration for expeditionary water purification systems.

DESCRIPTION: The Army seeks a simplified, real-time, inline monitoring of product water from military mobile water treatment systems to verify low pressure water treatment processes to enable the Army to accomplish two operational energy mission objectives: 1) allow easy scale down of water treatment systems for use in expeditionary water supply operations, and 2) reduce the fuel required for water treatment of stable, fresh water sources (i.e. allow by-pass of the reverse osmosis treatment). Since the required application is process control, identification is not as important as the knowledge that potentially viable microorganisms made it through treatment processes that were designed first to exclude them by size and then to disinfect them. Objectively, a small size configuration would support special operations that may prefer to exploit water sources with limited or no purification, however, most purification equipment will have its own generator and not be of man-portable size. The technical approach must lead to a device that is rugged and supportable in remote areas worldwide. The best approach uses sensor measurements or measurement techniques that have not been applied to water monitoring. Real-time can be considered less than 1 hour, however, time and sensitivity are relative to the best available performance for the information the device will provide, for example, it is a significant achievement to certify less than 1 e. coli per 100ml in less than 8 hours.

PHASE I: Demonstrate feasibility of measurement algorithm comprising a statistically robust number of samples of tap water spiked with a pathogen surrogate relevant to your measurement method. Verify measurement precision and repeatability by comparing the results to analysis conducted using the appropriate reference method from the current edition of Standard Methods for the Examination of Water and Wastewater (i.e. send some duplicate samples out for individual analyses by a commercial water test lab). Analyze to estimate operating cost per hour assuming device used 20 hours per day. Perform analysis and test to address any fundamental environmental and transport durability issues for the proposed design. Perform analysis and test to determine expected precision/sensitivity and time per measurement.

PHASE II: Deliver a complete sensor prototype or a probe (subsystem) that can integrate into existing commercial and military sensor suites to complete a sensor prototype. The sensor prototype should be capable of communication with an external data logger. Delivered prototype must be suitable for 3rd party and Army laboratory testing and field demonstration, but design does not need to be finalized, nor is military standard durability required. Clear operational manuals do not require military format. If choosing to integrate the probe (subsystem) into an existing military sensor suite, assume the military will perform integration. Test integrated prototypes to the criteria of Phase I with standard preparations and collected water and with both surrogate materials and real pathogens.

PHASE III DUAL USE APPLICATIONS: Final solution is a quick-connect autonomous inline system but a kit that accepts batch samples may be suitable. The sensor platform should be self-calibrating with duration of at least one month before recalibration is needed. The most supportable design would utilize commonly available supplies, common communication protocols and not directly interface with the controls of the water purification system. The Army can integrate the technology developed under this STTR into the mobile water purification systems being developed to answer Acquisition requirements and upgrade current systems. Water utilities could insert the technology developed under this STTR in facilities to improve quality control.

REFERENCES:

1. U.S. Army Public Health Command - TB MEDD 577 SANITARY CONTROL AND SURVEILLANCE OF FIELD WATER SUPPLIES http://phc.amedd.army.mil Note: This fully explains all field military operations that concern this topic author.

2. Standard Methods for the Examination of Water and Wastewater, a joint publication of the American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF). http://www.standardmethods.org/ Note: This reference is the benchmark for all analyses and source of approved methods for regulatory compliance.

3. “Complying with the Safe Drinking Water Act", US Army Public Health Command Technical Guide 179. Available to public online at: https://phc.amedd.army.mil/Pages/Library.aspx?Series=PHC+Technical+Information+Paper Note: section 4.4 Microbial Contaminants refers to military and civilian overlap.

4. “Filtration in the Use of Individual Water Purification Devices," US Army Public Health Command Technical Information Paper #31-004-0211. Available to public online at: https://phc.amedd.army.mil/Pages/Library.aspx?Series=PHC+Technical+Information+Paper Note: This is an excellent primer of filtration processes.

KEYWORDS: water, water quality monitoring, pathogen, filtration, water purification, sensor, microfiltration, ultrafiltration

A17A-T024

TITLE: Additive Manufactured Smart Structures with Discrete Embedded Sensors

TECHNOLOGY AREA(S): Materials/Processes

OBJECTIVE: Development of a hybrid additive manufacturing / 3D printing method capable of printing polymer and/or metallic smart structures with embedding electronic devices, such as sensors, accelerometers, antennas, tracking systems, etc.

DESCRIPTION: The Army desires to enhance the effectiveness and survivability of our ground systems by embedding sensors and electronics into both metallic and polymer structures. These sensors will be able to add health monitoring functionalities, threat detection, and improved communications. The goal is add these capabilities without no visual signatures, which would suggest that electronics devices are embedded. The purpose of this STTR is to explore the use of emerging Additive Manufacturing (AM) techniques to increase manufacturing flexibility and produce more effective metallic and polymer structures. Technology will support a wide range of military applications, such as autonomous vehicles and bridge structures.

Additive Manufacturing (AM) describes technologies that fabricate 3-dimensional objects by progressively building up material. Typically, successive layers of material are deposited under computer control to form an intended object. The term AM encompasses many approaches and includes the concepts of 3D Printing, Direct Digital Manufacturing (DDM), layered manufacturing, additive fabrication, and printed circuit boards. While these technologies are long established state-of-art fabrication technologies, little work has been done to look at interrupting the fabrication process and adding secondary operations such are machining, printed electronics and allowing pick & place of selected electronics. The technology will need to integrate temperature/vision sensors, closed feedback control, and precise CNC movement.

PHASE I: Perform proof-of-concept analysis and experiments that demonstrate the feasibility of a hybrid AM technology:

-Demonstrating the feasibility of using the AM technology to process the chosen structural materials by fabricating laboratory test coupons that possess the required material properties and represent a path to producing the target components.
-Demonstrating the feasibility of producing simple polymer component geometries with embedded electronics
-Identifying the key process parameters that need to be controlled and optimized in order to develop an effective method that can be transitioned into a qualified operation.
-Develop process needed to manufacture metallic structures

PHASE II: Expand the scope of the Phase I exploration to study AM technologies suitable for manufacture of both large scale Metallic and Polymer structures with a wide range of internal electronics. A robust prototype AM system will be produced under the Phase II. Work should include a review of requirements and the development of the system design relevant to a chosen application. The project should then proceed to acquire or build the necessary components and fabricate the prototype AM system in line with the design. Method studies should be performed to explore the prototype system’s fabrication of test coupons and representative parts using the MMC. The prototype AM system should be improved in the course of the method studies to incorporate results of the research. Method development should be verified through materials analysis of test coupons that confirm and improve the theoretical basis for the method. Materials tests that are appropriate for the target application should be developed and used to validate the performance of the technology. Coupons will have a rough size of 12 inches wide, 12 inches long, and a height of 6 inches. Phase II deliverables include the prototype AM system, 6 test coupons and a detailed final report describing the testing implementation and results, and scale-up observations. The report must also contain detailed procedures for casing material synthesis/fabrication and scaling.

PHASE III DUAL USE APPLICATIONS: With a successful Phase II demonstration, the contractor shall determine the capabilities for process control and the development of a strategy for qualification. Additionally, the contractor shall integrate and test the solution on several vehicle platform and demonstrate a path to commercialization and certification. Initial applications focus on the deployment novel vehicle and bridging components. Commercial applications are widespread, including personal and medical devices. Focus will be on Structural health monitoring/sensing.

REFERENCES:

1. Siggard, Erik J., et al. "Structurally embedded electrical systems using ultrasonic consolidation (UC)." Proceedings of the 17th solid freeform fabrication symposium. 2006.

2. Bourell, D. L., et al. "A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead." Proceedings of RapidTech (2009): 24-25

3. Love, Lonnie J., et al. "The importance of carbon fiber to polymer additive manufacturing." Journal of Materials Research 29.17 (2014): 1893-1898.

4. D. Espalin, D. W. Muse, F. Medina, E. MacDonald, and R. B. Wicker, “3D Printing multi-functionality: structures with electronics," International Journal of Advanced Manufacturing Technology

5. MacDonald; R. Salas; D. Espalin; M. Perez; E. Aguilera; D. Muse; R. Wicker, "3D Printing for the Rapid Prototyping of Structural Electronics," Access IEEE, no.99, pp. 1-12, 2013.

KEYWORDS: Additive manufacturing, additive fabrication, 3D printing, Direct Digital Manufacturing, layered manufacturing, embedded sensors / electronics, Hybrid Additive Manufacturing, printed electronics.



ARMY -


Directory: osbp -> sbir -> solicitations
solicitations -> Army sbir 09. 1 Proposal submission instructions dod small Business Innovation (sbir) Program
solicitations -> Navy sbir fy09. 1 Proposal submission instructions
solicitations -> Army 16. 3 Small Business Innovation Research (sbir) Proposal Submission Instructions
solicitations -> Air force 12. 1 Small Business Innovation Research (sbir) Proposal Submission Instructions
solicitations -> Army 14. 1 Small Business Innovation Research (sbir) Proposal Submission Instructions
solicitations -> Navy small business innovation research program submitting Proposals on Navy Topics
solicitations -> Navy small business innovation research program
solicitations -> Armament research, development and engineering center
solicitations -> Army 17. 1 Small Business Innovation Research (sbir) Proposal Submission Instructions
solicitations -> Navy 11. 3 Small Business Innovation Research (sbir) Proposal Submission Instructions

Download 229.78 Kb.

Share with your friends:
1   2   3   4   5   6   7




The database is protected by copyright ©ininet.org 2024
send message

    Main page