Some comments after the proposal to include the bluefin tuna in cites appendix I



Download 2.36 Mb.
Page3/3
Date15.01.2018
Size2.36 Mb.
#36249
1   2   3

4. The behavioural aspects

The bluefin tuna is a well evolutes species and a marine top predator. The behaviour is a very important and essential component of its life, even if we know only a few aspects of the bluefin tuna behaviour.

Ancient papers provided much information about the apparent behaviour of this species, while several papers in the XVII, XVIII and XIX centuries improved our knowledge, because scientists were spending a lot of time at sea, or in fishing areas, or collecting direct information from the fishermen. Only in the last part of the XX century, by using more modern technologies, it was possible to betters study some behavioural and ethological aspects of bluefin tuna, particularly in the Mediterranean Sea.

Thanks to the experience obtained by the use of aerial spotting to better catch the bluefin tuna with the modern Mediterranean purse-seiners6, the distribution and composition of the various schools of bluefin tuna were studied by aerial observations by Farrugio (1979), Arena (1980, 1981, 1982a, 1982b, 1982c) and Fromentin et al. (2003). It was clear that the composition of each tuna school was correlated to a very precise strategy of the bluefin tuna, particularly during the spawning period. In these years, the shape and composition of the various groups of bluefin tuna were deeply analysed and revealed complexities not known before.

From figure 7 (Arena, 1982a) it is clear that the strategy adopted by each school in the genetic period was able to affect the size frequencies in catches, but this fact is never taken into account when catch are analysed or used in VPA. Not all schools are the same in size composition, even in the same area. The aerial observations were checked with landing controls, having a direct and scientific confirm of the size frequencies reported by the observers. The fishermen’s choice is an important component of this fishery, together with the school composition and those factors combined are able to strongly interfere with our understanding of the size composition of the stock. This is particularly relevant also because purse-seine catches represent more than 80% of the East bluefin tuna catch.

The effects of climate changes or oceanographic anomalies on Atlantic bluefin tuna behaviour, particularly on the mass movements, are known since years (Fromentin 2002; Fromentin et al., 2000; Di Natale, 2007; Lemos & Gomes, 2004; Mackenzie & Myers, 2007; Ravier-Mailly, 2003; Ravier & Fromentin, 2004; Roule, 1921), but the recent mass movements of this species have not been studied so far, particularly in the Mediterranean Sea.



Figure 7 – The most typical composition of bluefin tuna schools during the spawning season in the ‘80s. A: cone-shaped formation; B: scale formation; C: caravan formation, having most of the individual spawning at the surface. p: pilot specimens. (Arena, 1982).

The tuna school showed a different composition after the great change noticed around 1996, when the major concentration of bluefin tuna moved away from the South Tyrrhenian Sea going to the South Mediterranean and also to the East Mediterranean. This situation, possibly linked to oceanographic factors (Di Natale, 2007), was partly reverted since 2006, when several groups of spawners returned again in the South Tyrrhenian Sea. In the meanwhile, according to the catch composition of purse seiners moved into cages, the schools were more mixed, with a higher presence of new spawners (fish around year classes 3 to 4).

In the new situation, the typical shapes of the tuna schools in the spawning period as studied by Arena (1982) became less defined, even if the “caravan” and “cone” shapes were among the most frequent. But, even in these cases, the size distribution within the schools was more mixed and less defined. Shortening the fishing period induced fishermen to maximize the yields and not to make any choice among the schools depending on size composition.

A recent paper (Fromentin et al., 2003) confirms the relevance of the aerial surveys, either for understanding the behaviour or to try to assess the presence and abundance of bluefin tuna in various Mediterranean areas, even if there is a very scarce attention to the previous literature on this subject. These fishery independent estimates could possibly correct some troubles in the current assessments and all the available evidences show that the presence of bluefin tuna at sea is considerably higher than the model estimated.

There are more issues concerning the behaviour, the ethology and the migrations of tuna which are very relevant for a more general overview of the bluefin tuna situation.



One of the most important issue is the migration from and to the Mediterranean Sea. According to the best available knowledge, the Mediterranean is the largest and most important spawning area for the bluefin tuna, with a lot of internal movements, and the Eastern Atlantic stock seems to have a peculiar size fidelity (figure 8). This factor was one of the most considered for taking the decision to separate the two Atlantic stocks, which anyway have a low percentage of mixing rate. Every scientist and manager following the bluefin tuna problems is well aware that the current geographical division between the two stocks is artificial since the beginning and many efforts are spent every year trying to find better justifications for this division or to propose more appropriate modifications. SCRS was asked in the recent past to evaluate the management effect of moving the separation in various ways and several mathematical efforts were spent to support the various hypothesis, without finding a better management solution.

Figure 8 – Main migratory courses of the bluefin tuna inside the western and central Mediterranean Sea during the spawning season, including pre- and post spawning movements known till the ‘80s. (Sarà, 1983).

Furthermore, the problems are much more complex that they appear, because bluefin tuna has the bad habit to non respect the various hypothesis suggested by scientists. As a matter of fact, bluefin tuna had several non-regular experiences in the past and it is possibly having some more that we don’t know.

The idea to visit for several years the North Sea up to the Norway (Gruvel, 1922; Heldt,1923, 1925, 1926; Le Gall, 1926) was not so good. It seems that bluefin tuna was attracted in these cold and shallow waters mostly by the high availability of good food with a high fat content (herrings and other species). Massive movements are historically reported and the very rapid disappearance of this fishery (Figure 9, from 1950 to 1979) was the reason for a dedicated Symposium by ICCAT in 2008. There, it seems that a combination of environmental factors, decreasing of the prey species due to overfishing and the high fishing pressure applied to the bluefin tuna in the short period were all together responsible for this disappearance. Even in this case, several people reacted, claiming for a disaster for the bluefin tuna and some others tried to reiterate the same in recent times.



Figure 9 – Geographic distribution of bluefin tuna catches per 5°x5° and per main gears (ICCAT, 2008).

A similar situation, but with even more unclear displacement happened between 1951 to1964 (Figure 9) in the SW Atlantic. This period was called “the Brazilian fishery” and it provided good yields for several years. Then the massive presence of bluefin tuna decreased in a very short time and apparently most of the specimens moved away from that area. There are not many good scientific analysis or data about the reason for these movements.

There is another issue, which is possibly linked to the same area but it is very often forgotten by most of the scientists working on bluefin tuna research. It was pointed out in the past for several times mostly by Jones (1971), Rodiguez Roda (1980), Cort (1980), Arena & Cefali (1982) and Arena (1982c, 1988). Some specimens were found during the fishing activity on Norway (Rodiguez Roda (1980), while others were noticed in the Canary Islands (Cort, 1980); Rivas (in Arena, 1980) reported that many specimens with these marks are commonly found among the bluefin tuna catches in the Bahamas. Bluefin tunas with these marks were reported also by Heldt (1932) in Spain and Morocco, but the marks were wrongly attributed to the Risso’s dolphin (Grampus griseus). In the Mediterranean, since the ‘70s, several specimens of medium and large size bluefin tunas were found with crater wounds in the lower posterior section of the body, in the perianal part (Figure 10).



Figure 10 – Descriptive figure of a large bluefin tuna having marks of Isistius brasiliensis (Arena, 1988).

These type of marks are typically caused by the bites of a small shark, Isistius brasiliensis (Quoy and Gaimard, 1824), the smalltoth cockiecutter shark. This shark species is distributed in several areas in various oceans, but its presence is common in the South Atlantic; it is usually a deep-water shark (living down to 3500 m), but having nocturnal movements up to the surface. The bites of Isistius brasiliensis leave natural marks able to be distinguished and identified for the entire life of the fish. The percentage of bluefin tuna with these marks in the catches from the South Tyrrhenian Sea varied from a minimum of 0.68% to a maximum of 2% in the 70’ and the ‘80s (Arena, 1982c, 1988; Arena & Cefali, 1982); almost the totality of these specimens were large males. Actually, according to the observers reports, the presence of tuna with these natural marks is still reported every year in the central Mediterranean.

These interesting and curious natural marks pose various problems in our understanding of the bluefin tuna movements and those questions remain unsolved even after the various tagging activities with pop-up satellite tags and archival tags carried out in the ‘90s and in recent years. As a matter of fact, only one tagged bluefin tuna went from the Mediterranean to south of Capo Verde Islands. It is very difficult to understand in which part of the Atlantic Ocean these marks are caused, but it seems logical that these natural marks reveal movements which are not known by the scientists and a possible different distribution (maybe vertical?) of medium and large males in some parts on the Atlantic Ocean, before migrating to the Mediterranean for spawning.

There is another important issue, which is often forgotten when dealing with the Eastern Atlantic stock of bluefin tuna. It is well known since the time of Plinius (I century a.C.), that an undefined portion of the Atlantic bluefin tuna adult population remain in the Mediterranean Sea for an undefined number of years (more than one year), wintering there. This point was raised many times in the XX century (Genovese 1965; Scordia, 1934b, 1934c, 1935a) or even more recently (Di Natale et al., 2005c, 2005d; ) and this part of the stock is certainly present in the deep central Mediterranean waters (including the area of the Strait of Messina) and it should be possibly present also in the Eastern Mediterranean, where it is supposed that a portion of the sub-population originally located in the Black Sea might stay. The effects of these “resident” bluefin tunas on the VPA have never been analised.

As it was explicitly mentioned in the external assessment of the ICCAT in 2008 (Hurry et al., 2008), maybe there are too many ICCAT scientists knowing very well the mathematical models while only a few scientists seem to really known the species and their life in the wild, often with an unbalanced situation. This fact is creating a sort of parallel vision of what is happening in the reality, relying much more on numerical data independently from their real meaning against the evidence coming from the situation at sea, where not everything can be immediately translated into numbers.



5. The stock assessment

SCRS carried out several stock assessment of bluefin tuna and all of them were based on the huge data bank kept by the ICCAT Secretariat, which includes the data transmitted by the statistical correspondents sitting in each Contracting Party or fishing entity. Data provided by scientists during the SCRS meetings are also included. The stock assessment methodology is mostly based on the VPA with a lot of exploratory hypothesis or comparison with other methodologies when necessary. SCRS and the ICCAT Secretariat have high level experts able to run these sophisticated models, which are considered the best available on the scientific market. This situation, which appears as one of the best among the various RFMOs, is not able to overcome a series of problems which are knows since many years.

It is well known that VPA is a model widely used in many fisheries and for a broad range of species, but it is not adequate to describe the enormous complexity of species having a huge geographic distribution and very complex movements (even massive), either vertical and orizontal. It relays mostly on total catch by gear, size frequencies distribution by gear, area and time strata, recruitment and standardised CPUE series by gear (other inputs exists and others are also possible). It provides a range of predictive hypothesis, which could be huge according to various choices, taking into account the uncertainties inputted by the scientists. This is the best available tool at the moment and this is the reason why it is adopted by SCRS and ICCAT, but everybody knows that it is not a magic tool and its limits in describing large pelagic fish populations are well known by the specialists. Anyway, this is what we have and we have to deal with it.

There is a very well-known sentence about the mathematic models: garbage in, garbage out. It is often recalled during the SCRS discussion to underline the bad quality of several data sets, particularly those on bluefin tuna and even more after the adoption of the quota system in 1996. In the past, catch data were sometimes incomplete or missing for some Contracting Parties (the statistical services were very different in each CP), but they were “honest” in their quality. Size frequencies, biological data and CPUE were usually provided by scientists and, even if they were often very localised, their quality was always considered sufficiently reliable.

When ICCAT decided to adopt and enforce the quota system for the bluefin tuna (was the first TAC never adopted in the Mediterranean Sea and it is still the only one), than the “gold rush” started and this was the cause of the incredible deterioration of the data submitted to ICCAT.

The data that were submitted by scientists at the end of the ‘90s were used by some CP to raise issues about compliance with the ICCAT rules, even if this is not possible in theory. This fact created an enormous trouble in the system, because scientists coming to SCRS meetings, and particularly those working under contracts with national governments (the large majority), started to pay a lot of attention to their data, avoiding to present data that were in contrast with the official ones provided by the governments. It doesn’t mean that scientist manipulated their data: it simply means that some data sets were not presented anymore. This fact is very evident when examining the size frequencies and their distribution. Small tunas became rare in the reports, because the undersize catches were not reported by many of the CPs.

This is a very relevant point, because it raises a couple of important and basic problems: the use of scientific data for compliance issues and the direct detrimental effects on the assessment model.

The first one is a procedural problem, because scientific data must be always used only for scientific purposes, to better understand the situation concerning a species and for suggesting the necessary strategies to better manage it according to the best scientific evidence. If those data are used against individual Contracting Parties, it is logic that national scientists cannot take this individual responsibility. This is an old discussion, going on in various fora: as a general principle, data from scientists should be used only for scientific purposes, while data from inspectors can be used for compliance purposes. The risk in using the scientific data also for compliance purposes is to face the situation SCRS is facing since years.

The second one is a perverted effect, because if Contracting Parties are not reporting the catch of undersize fish, then it is very difficult to understand in which way the recruitment happens every year, particularly when fishery independent research is not available. The fishery of juvenile bluefin tuna is quite common in the Mediterranean since historical times. It is reported by ancient writers, but it was considered a great problem also in the XVIII and XIX century: Avolio (1805) underlined the need to protect the juvenile bluefin tunas and reported a royal decrees imposing the protection of juveniles and the prohibition to catch, retain and sell them from September to December in 1795, extended to March in 1796. ICCAT had set various measures to protect juvenile bluefin tunas, but some of them were contradictory, allowing derogations for some fisheries, due to political negotiations carried out at the Commission level. But the real problem was not only the catch of juveniles by large vessels in some areas: it is the huge amount of small boats and vessels catching juvenile bluefin tuna when they approach the coast to get the best food chain. As it was written in several reports (Di Natale et al., 1986, 1987, 1988), small boats, mostly used for leisure fishery, are able to catch important numbers of juveniles per day and the total number of these boats and vessels in the Mediterranean Sea is quite huge.

Monitoring these catches is very difficult, because these fish are used for personal consumption or for the local markets, but it is essential to understand the recruitment and follow the yearly variations. If these data are not collected anymore of if they are not reported to SCRS for the risk of compliance problems, then the SCRS has no tools to properly assess the recruitment, in the absence of other indicators.



Figure 11 – An example of bluefin tuna weight frequency data collected by scientific observers in one area in the Central Mediterranean Sea in 2008 (left) and the data as they are reported only by vessels having quota in their landing declarations and in the official statistics for ICCAT Task II (right).

Figure 11 shows a true example of two data sets, collected exactly in the same area in 2008, one by scientific observers monitoring the effective landing by all vessels and the other one as landings of vessels having bluefin tuna quota reporting their catches in landing declarations and, then, in task II statistics. This is happening since many years and in this way SCRS lost the opportunity mostly to follow the high recruitment noticed in an anecdotic way by many scientists since 2003 almost in all the Mediterranean areas, thanks to prolonged high temperatures at seas.

This lack of basic data on recruitment clearly negatively affected the result of the assessment, independently from the tentative to apply correction factors under the hypothesis of various recruitment scenarios.



Another trouble affecting the size distribution in the model is caused by the rare presence of large fish. Usually, giant tunas are not abundant, because of natural factors, but their presence among the catches in the Mediterranean fisheries was always reported in the past. In recent times, the number of big fish in the national reports decreased and this was a further cause of concern in the SCRS bluefin tuna assessment. Our Institute decided to pay a particular attention to this issue and it was possible to identify several factors affecting the data. It is very clear that the different composition of the bluefin tuna schools reported in the previous chapter was one of the causes, together with the different fishing strategy of the purse seine fleet, but was not the only one. Giant bluefin tunas in cages were present anyway and even very large specimens were identified (a few over 600 kg, several over 400 kg and many over 200 kg). In the case of large fish, the effects of caging over the fork length, independently from the number of months, is usually minimal, particularly if compared to the same effect on juvenile tunas. These catches moved to cages were not properly monitored for many years and these specimens often escaped from the statistics.

Figure 12 – An example of bluefin tuna weight frequency data from longliners collected by scientific observers in two harbours in the Central Mediterranean Sea in 2008 (left) and the data from the same two harbours as they are reported by vessel having bluefin tuna quota in their landing declarations and in the official statistics for ICCAT Task II (right).

For gears other than the purse seine it was detected a different problem: due to the mandatory logbooks and landing declarations, the only possibility for some fishermen to escape from a quota overshot when landing in the authorised harbours was to lie about the weight of the individual fish, because the number is always easy to check. Figure 12 clearly shows the effects of these actions on the Task II data. This fact causes an important bias in the statistics, because of the decreasing number of large fish, along with the disappearance of juveniles in the reports and together with the higher presence of small and medium size fish. Logbook data from vessels having quota are used by many CPs for their official catch declarations to ICCAT.

Length data used in the recent bluefin tuna assessment are affected by several other factors. One of them is the poor correspondence between the real purse-seiners catches and the corresponding data input in the VPA. As a matter of fact, after the adoption of the caging system, it become almost impossible to get a proper number of length samples at the moment of catching the bluefin tuna, before they are moved to the fattening cages. Only a few specimens die during the catch operations or the transport and these are not considered as representative of the structure of the catch. To partly overcome the problem, the ICCAT adopted Rec.06-07, making mandatory a sampling procedure at the harvesting. This sampling, even considering various factors affecting the growth during the different fattening periods, was considered able to provide more reliable information about the size structure of the catches, particularly for the length frequencies of medium and large specimens, where the growth in length is minimal when they are kept in cages for a few months.

During the last (2008) assessment, it was decided not to use these data, that were collected spending a huge effort and an important amount of money by some CPs. At the same time, it was decided to use the very few data concerning the fish died during the purse-seine catch operations (a little more than 100 specimens) and raise them to the total catch, by using the Montecarlo suite of the VPA. It is a common point of view of many scientists that this was able to create really a “virtual population”, far from the real structure of the catches. It is very possible that this questionable procedure was the causes of the lost of large specimens in the assessments, while very large specimens were included in the length frequencies collected at the harvesting. The effect of this data substitution on the assessment is unknown, but certainly was another contribution to the increasing distance between the outlook and the reality.

Another issue is related to the CPUE series used in tuning the VPA. One of the most reliable for the East Atlantic stock was the Japanese longline series, because the data are collected with a very accurate methodology. This series showed a strong decreasing pattern and this was attributed at the beginning to a clear sign of lower abundance of the stock. During the ICCAT/SCRS-GFCM meeting hold in Genova (Italy) in 1996, it was clearly detected that the LL CPUE data for the Japanese fleet operating in the Mediterranean were affected by the increasing number of fish stolen from the LL by various fishing vessels7. This problem, able to seriously bias the analysis, was described and agreed, but the data are still used without any correction factor and those contributes in bringing down all the abundance estimates.

Total catch data, after the adoption of the quota system, faced a real disaster: it was possible for several CPs to revise their catch statistics for the years previous to the adoption of the quota, which were calculated on the 1995 and 1996 catches. Some CPs really tried their best to get the most reliable statistics, recovering data from any possible source (including selling notes and invoices), some others apparently revised their statistics without not so many references to specific documents. The reason for that was to try to obtain the high possible portion of the quota, and this was the real “gold rush”. Furthermore, the situation was complicated by the request to establish new allocation criteria, not only considering the historical catches but also the new needs of coastal CPs, even without any tradition in the bluefin tuna fishery. This new problem was based on the right of each CP to access a distributed resource, which is justified in principle. The result of this exercise was a further trouble in the system: CPs with a log historical tradition but with weak statistics got quota shares that were insufficient to cover their fishing capacity, while others got quota shares that were well above their fishing capacity. In a very few cases, vessel from the first set of CPs moved to some CPs of the second group. The final result was that many CPs were suspected to under-report their total catch, some of them were officially identified by the ICCAT Compliance Committee by cross checking the export data with the catch data, WWF submitted several reports on this issue and SCRS tried to reassess the total figure of catch for the East Atlantic bluefin tuna stock by using theoretical fishing capacity estimates, that were used in the assessment as a part of the uncertainty and to develop various management scenarios.

SCRS, in all its reports since about 15 years stated very clearly that there was a progressive deterioration of the data and, after the adoption of the quota system, that the data used for the assessment were considered unreliable.

The final result of these and many other wrong or manipulated inputs to the VPA are now evident. The last 2007 assessment, in its best scenario, reports a SSB of only 71,000 tons and a total biomass ranging from 1 to 2 million bluefin tuna. These numbers are clearly very underestimated, because in the same year the total estimated catch was around 61,000 tons and it is well known that each single school of very small bluefin tuna (7-8 cm) can account to more than 100,000 individuals, while this number change according to the individual size, and there are usually many hundreds of these schools in each geographic area where there is the proper food chain. The very high number of juveniles is also confirmed by the huge catch rate reported in the past for several small boats illegally fishing for bluefin tuna. Even the catch of large specimens provides every years important numbers. These data combined show that the current assessment provides, under the most optimistic scenarios, total biomass and SSB which are clearly underestimated.

6 The request to move the Northern Bluefin Tuna, Thunnus thynnus (Linnaeus, 1758), under the CITES Appendix 1

The proposal to include the Northern Bluefin Tuna (the West Atlantic and the East Atlantic stocks) into the Appendix 1 of the Washington Convention (better known as CITES) was promoted by the Government of Monaco in July 2009 and subsequently endorsed by various Countries, most of them not concerned by the bluefin tuna fishery.

The proposal is mostly based on the low level of the actual bluefin tuna population, the unsustainable level of fishing effort, the outputs of the assessment provided by SCRS with the following low recovering figure of the population in the wild and the mismanagement of this fish resource by ICCAT and all Countries concerned.

The proposal makes reference mostly to SCRS documents and WWF reports, but includes several opinions that cannot be shared, because these appear politically addressed.

As a matter of fact, without considering the points raised in the previous chapters and many others not here examined, it is possible for an external lecturer to agree in principle with the proposal, than it is necessary to clarify some points and bring them under a more critical perspective, possibly more close to the reality of the status of Atlantic bluefin tuna.

Besides some “minor” points, like the reduced spawning season reported or the small spawning areas mentioned (which is really far from the scientific literature available), one of the key issue are the outputs of the SCRS assessment in 2007, identifying a SSB of 72,000 tons and a total biomass between 1,000,000 to 2,000,000 individuals. These estimates were already discussed at the end of the previous chapter and they are clearly underestimated under the most optimistic projection. Furthermore, in the proposal there is no mention of the SCRS report in 2006, when it was clearly said that the data were unreliable and then SCRS was suggesting the ICCAT Commission to postpone the assessment until reliable data will be made available. The big mistake by SCRS at that time was to not resist to the Commission’s request to go on with the assessment as it was planned in 2007, without any care to this awareness sign. This is one of the most relevant issues in the entire discussion, because an assessment carried out by using unreliable data cannot provide reliable estimates, even exploring various scenarios and considering a wide range of uncertainties. Ignoring this general unreliability is very relevant and an heavy responsibility.

The proposal by Monaco makes reference to a recent paper by MacKenzie et al. (2009). The authors used very good mathematical models and their high skills but unreliable data sets and academic hypothesis, quoting also papers (like Bearzi et al, 2006) which are based on non-scientific methodologies8. There is the general opinion that the paper from MacKenzie et al. is a good mathematical exercise, based on a high knowledge of population dynamics but without any direct knowledge of the bluefin tuna itself and the fishery, possibly having a clear target to reach.

Bluefin tuna is considered in the Monaco proposal as “a medium productivity species”, while usually bluefin tuna is included within the species having a considerable recruitment, which is the case in the Mediterranean Sea since 2003. The natural mortality rate is assumed by convention since many years and it is possibly underestimated, but it was adopted by SCRS and maintained the same for a long period, without taking into account the improvements for the evaluation of this basic factor, which is one of the most relevant in a population assessment.

The marked decline of the population reported by the proposal is logically and heavily affected by the assumptions and the unreliable data; at least the SSB trend is clearly wrong (otherwise, we should assume that the remaining less than 10% SSB in 2007 was able produce the high recruitment noticed in 2008).

There is another factor affecting the overall view of the bluefin tuna spawning (and then the recruitment capacity): the proposal from Monaco, along with a few other papers, reports data on the spawning season and on the environmental conditions which are necessary to induce the spawning that are wrong. As a matter of fact, it is well know by the huge scientific literature available that spawning can usually occur from mid May to mid July, with certain variability according to the local oceanographic conditions. The temperature in the upper stratum of the sea must be usually >21°C (and not >24°C) and with a well established thermocline. This last factor is very relevant, because it is necessary to have a certain water mass at the surface with the right temperature to induce the biochemical stimuli and the proper temperature jump (usually a difference of about 3°C between the upper and the lower stratum) at the thermocline to work as a sort of biological switch for the spawners. Increasing the minimum temperature and shortening the spawning seasons (as it was done in the proposal) are elements able to negatively affect the theoretic reproduction capacity of the East Atlantic stock in the assessment.

The full vision of the status of Atlantic bluefin tuna is heavily negative, without considering several factors, able at least to raise strong doubts about the pessimistic assessments, like, for example, this point raised by SCRS in its 2008 report:

In summary, available indicators from small fish fisheries in the Bay of Biscay did not show any consistent trend since the mid-1970s. This result is not particularly surprising because of strong inter-annual variation in year class strength. Indicators from longliners and traps targeting large fish (spawners) in the East Atlantic and the Mediterranean Sea displayed a recent increase after a general decline since the mid-1970s. The Group found it difficult to derive any clear conclusion from fisheries indicators in the absence of more precise information about the catch composition, effort and spatial distribution of the purse seine fisheries (which represent more than 60% of the total recent reported catch). Fisheries-independent indicators and a large scale tagging program in the Mediterranean Sea are also strongly needed to fill major gaps of scientific information.”

Another important point raised by the proposal is that the bluefin tuna is “affected by trade”: as a matter of fact, the bluefin tuna is affected by international trade since the Roman times and maybe even from the Phoenician times. Whenever we consider that the total catch level in the XVI century in the Mediterranean was estimated to be close to 60,000 t (with tuna traps only)9, than we can easily realise that there is something wrong in the present outlook and in the common understanding of this species. Even the market motivations are wrongly stated, because fishery is not only driven by the Japanese market and Mediterranean inhabitants do not consume only fresh tuna meat. Of course, it is well known that many troubles were recently caused by the international trade, particularly that one promoted by the Japanese market, and by the trade of IUU products, but these are the results of weak controls, not by the trade itself.

The proposal by Monaco includes large parts of descriptions about the bluefin tuna natural history, the biology and ethology, but there is a lot of misleading information. About recruitment, the effects of environmental factors remain obscure, particularly if nobody analyse them. At the same time, while it is well stated in the proposal that the ecological extinction of the bluefin tuna would result in an unpredictable effect on the prey populations, it is simply not taken into account what was the effect on bluefin tuna of the heavy fisheries on its prey species that is happening since decades. This approach is scientifically not the most adequate. It is again a clear demonstration that the field knowledge is very poor and the scientific literature considered is limited to the most recent papers, independently from well established scientific knowledge.

A lot of attention is given to the fact that the bulk of the fishery is targeting spawners and this fact heavily affected the SSB in the last 10 years. The problem is, again the poor knowledge of the history of this fishery, because most of the historical catches over the centuries (at least in weight!) have been always spawners, apparently without creating many troubles to the bluefin tuna population. It is always a problem of balancing the catch with the availability of the resource and to its components in age. When the proposal reports that ICCAT set quota levels well over those indicated by the assessment, it doesn’t make any reference to the unreliable data used for it. Besides of other considerations, this fact was taken into account by the Commission in assigning the quota under a management plan.

If we consider as true the SCRS assessment, having between 25 to 35% overfishing of the MSY, than it should be necessary to explain why, after more than 10 years of this situation, the bluefin tuna is still alive and the purse seine fleets are able to catch about the full quota in less than 10 days! It is clear, again, that the outlook is based on unreliable data and even less reliable assessments, as stated many times by SCRS. This should be taken into account, together with the fact that bluefin tuna (even if it is overfished at an unknown level) is still largely present in all the Mediterranean Sea and in the Atlantic, while the enforcement of the ICCAT regulation is seriously becoming effective and very strict measures were adopted by the EC in 200910.

The eventual suspension of bluefin tuna fishing mentioned by the ICCAT external advisory panel in 2008 (Hurry et al., 2008) does not necessarily include the listing of the stocks in CITES Appendix 1, but strict management measures; furthermore, it doesn’t take into account any social, cultural and economic aspects of the fisheries. For example, the closure of the bluefin tuna fishery, even for only one year, will result in loosing the tuna trap and the harpoon fisheries (two historical activities having a very limited impact on the bluefin tuna stock) for ever, because they are not able to stay in stand-by even for one year only. The harpoon fishery, targeting mostly swordfish, has the bluefin tuna11 as an important component of its little economy and, without this species, it will be not profitable anymore. The tuna trap fishery has a huge labour component and stopping the activity even for only one year causes immediately losing the staff and a great economic damage for each factory. Both of these fisheries are “survivors” from ancient times and a part of the Mediterranean culture. Like for the traditional Inuit activities in whale fishing, at least historical fisheries should be out of all these discussions and kept alive and active independently of any management decision.

It is useless to examine here in details all the other points of the proposal, because many parts are more than questionable. Discussions should go on for long times and they usually happens every year in SGRN.


7. Conclusions
The poor knowledge of the natural history of this species by somebody is rapidly becoming science in the public domain, forgetting about centuries of scientific papers. At the same time, it is clear that the scientific information on this species and its fishery must be seriously improved, including the necessary fishery independent data.

The CITES is a very important Convention, highly reputed all over the world, that was efficient and effective in protecting many species from the extinction in the wild. All the species listed in Appendix 1 have or had serious conservation problems in terms of threat of extinction and the CITES is designed exactly for this. The CITES offices are used to deal with those problems and the level of controls, fines and other legal provisions is very high in most of the signatory Countries.

This is the reason why the use of CITES for widely distributed species not having a real conservation problem in terms of extinction is really inappropriate and pertaining to a political issue more than a conservation problem. And nobody never demonstrated or even reported that the Atlantic bluefin tuna is threatened by extinction.

Since years there is a clear mismanagement problem and the bluefin tuna is overfished, particularly in the last years when fleets increased too much, but this is still a serious fishery management problem and we are all lucky that it is not a conservation issue, because, again, bluefin tuna is not threatened by extinction.

The unreliable and unrealistic outlook of the stock, caused by the unreliable data, and the continuous shifting of the forecast (and the overfishing figure) after each assessment are all clear indications that the situation is serious but it is not extremely dramatic. The unreliability of the data and the outputs of the assessment make difficult to properly analise if the current situation of this species fits the CITES criteria. When we take into account the situation at sea and many other issues discussed in this paper, there is a good evidence of this statement.

Listing the Atlantic bluefin tuna in CITES Appendix 1 would result in practice in a complete ban of the fishery in the Atlantic and the Mediterranean at least for the first two years and in very serious and conflicting management issues in the following years, because the domestic CITES authorities are different from the domestic Fishery authorities, and national CITES Scientific Commissions usually do not include any fishery scientist.

CITES has an incredible amount of bureaucracy, maybe necessary to ensure a full control of the system for very threatened species, but impossible to be followed by any fishermen and difficult to be followed also by any Fishery authority. The time required by the CITES bureaucracy does not fit any fishery need, because this Convention was established for other purposes.

Listing the Atlantic bluefin tuna in CITES Appendix 1 would possibly imply the immediate extinction of the most historical traditional fishing activities in EU, like the tuna traps and the harpoon fishery, with a serious cultural and socio-economical problem. Both these activities have no responsibility in the current troubles of the Atlantic bluefin tuna and they must be protected anyway.

RFMOs and CITES have clear different management roles and different responsibilities (Di Natale, 2004a, Kell et al., 2000).

The Atlantic bluefin tuna has a serious management problem and even more serious data and assessment problems, and these needs to be faced by the responsible management body, the ICCAT, with the fundamental support of all the Contracting Parties and under the external overview of important NGOs. This is a clear responsibility issue, but again not a conservation problem. The bluefin tuna recovery plan must be immediately and strictly enforced, with no derogations or exemptions.

If the management of Atlantic bluefin tuna will pass from the ICCAT, one of the most reputed RFMO, to the CITES, than the credibility of ICCAT will be lost for ever and this will cause unpredictable problems for many species and for the RFMOs system in general.

If the Atlantic bluefin tuna will be listed in CITES Appendix 1 having many millions of individuals dispersed over the oceans, then the inclusion of many other halieutic species will necessarily follow the same track in a short time, creating a serious problem in terms of management roles.


8. Bibliography
Addis P., Locci I., Cau A., 2008 – Anthropogenic impacts on Bluefin tuna (Thunnus thynnus) trap fishery of Sardinia (Western Mediterranean). ICCAT/SCRS Coll. Vol. Sci. Pap., 63: 174-185).

Aldrovandi U., 1638 . De piscibus et de Cetis. Tip. Nicola Tebaldi, Bologna, V: 1-359.

Alliata F., 1951 – Il tonno e la tonnara. In: Le vie d’Italia. Touring Club Italiano.

Aloncle H., 1964 – Note sur le Thon rouge de la Baie Ibero-Marocaine (II). Bull. I.P.M.M., 12 : 29-41.

Alvarado Bremer J.R., Viñas J., Mejuto J., Ely B., Pla C., 2005. Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogen. Evol, doi:10.1016/j.ympev.2004.12.011.

Angotzi F., 1901 – L’industria delle Tonnare in Sardegna. Bologna.

Anonimous, 1952 – Mattanza del Tonno. Ente Prov. Turismo, Trapani : 1 14

Arena P., 1959 – Observations accomplies pendant la saison de pêche 1958 dans une madrague le long des cotes de la Sicilie. FAO, Proc.Gen.Coun.Médit., 5 : 510-514.

Arena P., 1963 – Observations dans la partie sud de la mer Tyrrhenienne sur les habitudes et le comportement du thon rouge (Thunnus thynnus, L.) pendant sa period génetique. FAO Proc. Gen. Fish. Coun. Médit., 7 : 395-411.

Arena P., 1971 – Orientamenti ed attività del Centro Sperimentale per l’industria della Pesca e dei Prodotti del Mare di Messina. Mem. Biol. Mar. Ocean., n.s.1(2) : 21-51.

Arena P., 1980 – Observation aeriennes sur la distribution et le comportement du Thon rouge, Thunnus thynnus (L.), de la Mer Tyrrhenienne. XXVII Congr. Assem. Plen. CIESM, Cagliari.

Arena P., 1981 – Osservazioni sulle concentrazioni e sulla pesca del Tonno e dell’Alalunga nelle zone di mare meridionali. Quad.Lab.Tecn.Pesca., 3(1), suppl.: 77-79.

Arena P., 1982a – Biologia, ecologia e pesca del tonno (Thunnus thynnus L) osservati in un quinquennio nel Tirreno meridionale. Atti Conv. UU.OO:sottop. Ris.Biol.Inq.Marino, Roma: 381-405.

Arena P., 1982b – Caratteristiche delle reti a circuizione per tonno e loro efficienza in relazione alle condizioni ambientali ed ai comportamenti della specie pescata. Atti Conv. UU.OO. sottop. Ris.Biol.Inq.Marino, Roma: 407-424.

Arena P., 1982c – Composizione demografica dei branchi di tonno (Thunnus thynnus, L.) durante il periodo genetico, con indicazioni utili alla individuazione dello stock di riproduttori che affluiscono nel Mar Tirreno. Atti Conv. UU.OO. sottop. Ris. Biol. Inq. Marino, Roma.

Arena P., 1982d – La pêche a la senne tournante du thon rouge, Thunnus thynnus (L.), dans les bassins maritimes occidentaux italiens. ICCAT/SCRS Coll. Vol. Sci. Pap., 17(2): 281-292.

Arena P., 1985 – La pesca del tonno in Sicilia. Atti Conv.Pesca e Trasf.Prod.Itt.Siciliani, Trapani: 23-28.

Arena P., 1986 – Sullo stato e le caratteristiche della pesca in Italia dei grandi Teleostei pelagici (Tonno, Alalunga e Pescespada). Rapp. Min.Mar.Merc., miméo: 1-17.

Arena P., 1988 – Risultati delle rilevazioni sulle affluenze del tonno nel Tirreno e sull’andamento della pesca da parte delle “tonnare volanti” nel triennio 1984-1986. MMM-CNR, Atti Seminari UU.OO. Resp.Prog. Ric., Roma: 273-297.

Arena P., Cefali A., 2002- Composizione demografica dei branchi di tonno, Thunnus thynnus (L.) durante il periodo genetico, con indicazioni utili alla individuazione dello stock di riproduttori che affluiscono nel Mar Tirreno. Atti Conv. UU:OO. Ris. Biol. Inq. Marino, Roma: 425-442.

Arena P., Cefali A., Munaò F., 1980 – Analisi sull’età, peso, lunghezza ed accrescimento di Thunnus thynnus (L.) catturati nei mari della Sicilia. Mem.Biol.Mar.Ocean., X(5): 119-134.

Arena P., Cefali A., Potoschi A., 1979 – Risultati di studi sulla biologia, la distribuzione e la pesca dei grandi scombro idei nel Tirreno meridionale e nello Ionio. X(4): 329-345.

Arena P., Cefali A., Soldano F., 1980 – Valutazioni dello sforzo di pesca sulle concentrazioni di tonni genetici del Tirreno meridionale. Mem.Biol.Mar.Ocean.,

Arena P., Di Natale A., 1987 – Situazione della pesca dei grandi Scomboidei (tonno, alalunga e pescespada) in Sicilia. 1a Conf.Reg.Pesca, Mazara del Vallo: 1-13.

Arena P., Li Greci F., 1970 – Marquages de Thonidés en mer Tyrrhénienne. Journées Ichthyol. C.I.E.S.M.: 115-119.

Aricò F., Genovese S., 1953 - Sui caratteri biometrici del Tonno (Thunnus thynnus, L.) tirrenico. Boll. Pesca Piscic. Idrobiol., 8(1):1-44.

Aristotelis, 1635 – De Animalibus. In: Stagiritae peripatetico rum. Principis de Historia Animalium. Ed. Theodoro Goza, Venezia: 1-843.

Athaeneus di Naucratis (Ateneo), 1656 – Deumosophistae. Hugueton J.A. & Ravan M.A.: 1-812.

Avolio F.P, 1805 – Delle Leggi Siciliane intorno alla Pesca. Reale Stamperia, Palermo: 1-239.

Bard F.X., Cort J.L., Rey J.C., 1978 – Commentaire sur la composition démographique des pêcheries de Thon rouge (Thunnus thynnus) de l’Est Atlantique et de la Méditerranée, 1960-1976. ICCA/SCRS Coll. Vol. Sci. Pap., 7(2) : 355-365.

Bearzi G., Politi E., Agazzi F., Azzellino A., 2006 – Prey depletion caused by overfishing and the decline of marine megafauna in the eastern Ionian Sea coastal waters (Central Mediterranean). Biol. Conservation, 127: 373-382.

Belloc G., 1961 – Inventaire des madragues méditerranéennes. FAO Tech. Pap. Gen. Fish. Coun. Medit., 6: 345-361.

Block B.A., Stevens E.D. (Editors), 2001 - Tuna. Physiology, ecology, and evolution. Fish Physiology Series, vol. 19. Academic Press, San Diego, CA.

Braun G., Hogenberg F., 1572-1617 – Civitates Orbis Terrarum. Colonia: 340 tabl.

Broughton R.E,. Gold J.E., 1997 - Microsatellite development and survey of variation in northern bluefin tuna (Thunnus thynnus). Mol. Mar. Biol. Biotechnol., 6: 308-314.

Carlsson J., McDowell J.R., Diaz-Jaimes P., Carlsson J.E.L., Boles S.B., Gold J.R., Graves J.E., 2004 - Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol. Ecol. 13: 3345-3356.

Carp., 1951 – Fishery resources in Turkey. FWS, Fishery leaflet, 390: 1-24.

Cattaneo Vietti R., Bava S., 2009 – La Tonnarella e la pesca tradizionale a Camogli. Le Mani Ed. Genova: 1-143.

Cau A., Cavallaro G., De Metrio G., Di Natale A., Marano G., Orsi Relini L., Piccinetti C., 1999 - Revision of recent bluefin tuna catches in Italy. SCRS/98/89, Genova, September 1998, ICCAT Coll. Vol. Sci. Pap., XLIX: 434-436.

Cetti F., 1777 – Storia naturale di Sardegna. III. Anfibi e Pesci. Ti. Giuseppe Piattoli, Cagliari: 1-208.

Clark T.B., Ma L., Saillant E., Gold J.R., 2004 - Microsatellite DNA markers for population-genetic studies of Atlantic bluefin tuna (Thunnus thynnus thynnus) and other specie of genus Thunnus. MEN 4:70-73.

Collette B.B., Reeb C., Block B.A., 2001 - Systematics of the Tunas and Mackerels (Scombridae), In Tuna. Physiology, ecology, and evolution, Block BA, Stevens ED (Eds). Fish Physiology Series, vol. 19. Academic Press, San Diego, CA, pp. 1-33.

Consolo V., 1987 – La pesca del Tonno in Sicilia. Sellerio Ed., Palermo: 1-203.

Cort J.L., 1990 - Biología y pesca del atún rojo. Thunnus thynnus (L.) del mar Cantabrico (Tesis doctoral). Publicaciones Especiales Instituto Español Oceanografía 4: 1-272.

Cort J.L., Rey J.C., 1983 – Distribucion geografica de Atun rojo (Thunnus thynnus L.) juvenil del Atlantico Este, Mediterraneo Occidental y Adriatico. ICCAT/SCRS Coll. Vol. Sci. Pap., 20(2): 298-238.

Costanza S., 2000 – Gli uomini, il lavoro, l’economia. In: Ravazza N.: La terra delle Tonnare. Trapani, Pro Loco San Vito Lo Capo.

Curtis, R.I. 1991. Garum and Salsamenta. E.J. Brill, Leiden, Netherlands, 226 pp.

D’Amancic A., 1954 – Essais de peche des thonidés à la senne tournante par les pecheurs yougoslaves in Tunisia. FAO Proc.Gen.Fish.Conn.Medit.,2 : 151-166.

D’Amico F.C., 1816 – Osservazioni pratiche intorno alla pesca, corso e cammino de’ tonni. Società Tipografica, Messina: 1-164.

Dean J.M., Addis P., Cau A., 2003 – Sustainable fishing in the Mediterranean for Bluefin tuna: a case study of ancestral fishing technologies and contemporary practices. Workshop on farming, Management and conservation of bluefin Tuna, 2003, Istanbul: 102-117.

De Cristoforo S., 1970 – Le Tonnare Italiane. Ministero della Marina Mercantile.

De La Blanchère H., 1868 – Dictionaire des Pêches. Paris: 1-378.

De la Serna J. M., Ortiz de Zàrate V., Josè Gòmez M., 2001 - Actualizacion de los datos de marcado-recaptura de atùn rojo (Thunnus thynnus L.) en el Atlantico Este y Mediterraneo. ICCAT Col.Vol. Sci. Pap., 52: 784–792.

De Metrio G., Arnold G.P., De la Serna J.M., Yannopoulos C., Labini G.S., Deflorio M., Buckley A., Ortiz De Urbina J.M., Megalofonou P., Pappalepore M., Block B., 2003a – Where do Atlantic Bluefin Tuna (Thunnus thynnus L.) spread after the spawning in the Mediterranean Sea? Workshop on farming, Management and conservation of bluefin Tuna, 2003, Istanbul: 96-101.

De Metrio G., Arnold G.P., de la Serna J.M., Block B.A., Megalofonou P., Lutcavage M., Oray I., Deflorio M., 2005 - Movements of bluefin tuna (Thunnus thynnus L.) tagged in the Mediterranean Sea with pop-up satellite tags. ICCAT Col. Vol. Sci. Pap., 58: 1337–1340 (2005).

De Metrio G., Corriero A., Desantis S. Zubani D., Cirillo F., Santamaria N., Aprea A., Deflorio M., De la Serna J.M., Megalofonou P., Bridges C.R., 2003b – Gonadal cycle of wild bluefin tuna in the Western Mediterranean and Central Mediterranean. Workshop on farming, Management and conservation of bluefin Tuna, 2003, Istanbul: 89-95.

De Metrio G., Oray I., Arnold G.P., Lutcavage M.E., Deflorio M., Cort J.L., Karakulak S., Anbar N., Ultanur M., 2004 - Joint Turkish-Italian research in the eastern Mediterranean: Bluefin tuna tagging with pop-up satellite tags. ICCAT Col. Vol. Sci. Pap., 56: 1163–1167.

De Miranda y Riveras A., 1927 – La Pesca del Atun en España. Min. Marina, Dir. Gen. Pesca., Madrid: 1-54.

De Salas J., García Solá F., 1876 – Memoria sobre la industria y la legislacion de pesca que comprende desde el año 1870 al 1874. Imp. T. Fortanet, Madrid: 1-741.

Devedjian K., 1926 - Pêche et Pêcheries en Turquie. Imprimerie de l’Administration de la Dette Publique Ottomane, Istanbul: 1-480.

Dicenta A., Piccinetti C., 1977 – Desove de Atun (Thunnus thynnus L.) en el Mediterraneo occidental y evauacion directa del stock de reproductores basado el la abundancia de sus larvas. ICCAT/SCRS Coll. Vol. Sci. Pap., 7(2):289-295

Dieuzeide R., 1931 - La peche du Thon à la ligne dans la Baie de Castigione. Boll. Trav. Stat. Aquic. Peche, Castiglione, Alger : 1-21.

Di Gregorio, F., Massoli-Novelli, R. 1992. Geological impact of some tailings dams in Sardinia, Italy. Environ. Geol. 19: 147-153.

Di Natale A, 1988a - Miti e tradizioni fra Uomo e Pesci In: Mare Nostrum, Rainero Ed., Firenze: 61-85.

Di Natale A, 1988b - I Pesci tipici dello Stretto di Messina. In: Barche, Padroni e Marinai, Sfameni Ed., Messina: 101-109.

Di Natale A, 1988c - La piccola pesca artigianale mediterranea. Un esempio: la Sicilia (Italia). VIII Semana das Pescas dos Açores, Relatorio, Horta (Fajal): 121-137.

Di Natale A, 1989 - Il mare: l'ambiente pelagico. In: Atlante della Natura in Italia. Amilcare Pizzi Ed., Cinisello Balsamo: 158-169.

Di Natale A, 1990 - Bluefin tuna (Thunnus thynnus L.) and Albacore (Thunnus alalunga Bon.) fishery in the Southern Tyrrhenian sea: 1985-1989 surveys. FAO/GFCM - ICCAT Expert Consultation on large pelagic species, Bari, Coll.Vol. Scient.Pap., XXXIII: 128-134.

Di Natale A, 1991 - Bluefin tuna (Thunnus thynnus L.) and Albacore (Thunnus alalunga Bon.) fishery in the Southern Tyrrhenian sea: 1985-1989 surveys. GFCM - ICCAT Expert Consultation on evaluation of stocks of large pelagic fishes in the Mediterranean area, Bari, FAO Fisheries Report No. 449, FIPL/R449: 144-157.

Di Natale A, 1999 - La ricerca sulla pesca: I Grandi Pelagici. In. Le Ricerche sulla Pesca e sull'Acquacoltura nell'Ambito della Legge 41/82. Parte 4: Relazioni. M.P.A., Roma, 1999; Biol. Mar. Medit., 7(4): 46-58.

Di Natale A, 2004a – Il ruolo degli organismi internazionali nella gestione delle risorse dell’area mediterranea. In: Dalla conflittualità al partenariato: il ruolo della pesca nel bacino del Mediterraneo. Ismea, Roma: 135-156.

Di Natale A, (ed.), 2004b – Una rete coordinata per l’acquisizione di indici di reclutamento del tonno e del pescespada nei mari italiani. – Relazione riguardante l’area del Tirreno centro-meridionale e dello Stretto di Sicilia. 6-A-19. Rapporto alla Direzione Generale della Pesca e dell’Acquacoltura, Ministero delle Politiche Agricole e Forestali, 100 p + all.

Di Natale A, 2007 – I cambi climatici nel Mediterraneo: modificazioni della struttura della pesca e possibili adattamenti. Cambiamenti Climatici: Conferenza Nazionale, MATTM, 20/07/2007, Brindisi: 22 p.

Di Natale A, 2008 – Il tonno: una gestione incerta e problematica. In: La Tonnara tra memoria e futuro. Favignana, 1 Giugno 2007: 8-12.

Di Natale A, Addis P., Cau A., Celona A., Cingolani N., Deflorio M., De Metrio G., Fuggetti C., Garibaldi F., Mangano A., Marano G., Palandri G., Piccinetti C., Relini Orsi L., 2004 – Studio pilota sulla pesca sportiva del tonno in Italia. Rapporto alla Direzione Generale Pesca del Ministero.

Di Natale A, Addis P., Cau A., Celona A., Cingolani N., Deflorio M., De Metrio G., Fuggetti C., Garibaldi F., Mangano A., Marano G., Palandri G., Piccinetti C., Relini Orsi L., 2005a - Pilot report on tuna sport fishing activity in Italy. SCRS/2004/161, ICCAT Coll. Vol. Sci. Pap., 58(4), 2005: 1360-1371.

Di Natale A, Andaloro F., Mangano A., Pederzoli A., 1989 - Rapporto sulla pesca in Italia. World Wildlife Fund - Italia, Serie Atti e Studi, 7: 1-75.

Di Natale A, Angelini A., Valettini B., 2006a – A responsible fishery in Europe: a must for an ancient marine culture. (Abstract). WON-UNESCO, Third Global Conference on Oceans, Coasts and islands. Paris, 23-27/1/06.

Di Natale A., D’Orazio E., Leonardi E., Mangano A., Mento A., Prestipino Giarritta S., Scuderi M.C., Sarà M., Magnaghi L., Podestà M., 1987 – Rilevazioni delle quantità pescate e dello sforzo di pesca esercitato nei confronti delle principali specie di Scombroidei. Rapp. Min.Mar.Merc., miméo: 1-113.

Di Natale A, D’Orazio E., Leonardi E., Mangano A., Mento A., Prestipino Giarritta S., Scuderi M.C., Sarà M., 1988 - Rilevazioni sulle quantità pescate e sullo sforzo di pesca esercitato nei confronti delle principali specie di Scombroidei - Relazione preliminare. Atti Seminari Unità Operative responsabili dei progetti di ricerca promossi nell'ambito dello schema preliminare di Piano per la pesca e l'acquacoltura, M.M.M. - C.N.R.: 301-317.

Di Natale A, Longo M., Mangano A., Navarra E., Pederzoli A., Placenti V., Schimmenti G., Valastro M., 1993 - Osservazioni sulla pesca degli Scombroidei nei bacini tirrenici ed jonici occidentali. Report to Ministero della Marina Mercantile, 218 p., 4 tavole, 16 all.

Di Natale A, Mangano A., 2008 – CPUE series (1985-2006) by gear type in the Tyrrhenian Sea and in the Strait of Sicily. SCRS/2007/119, ICCAT Coll. Vol. Sci. Pap., 62(4), 2008: 1128-1141.

Di Natale A, Mangano A., Asaro A., Bascone M., Celona A., Valastro M., 2005b.- Bluefin tuna (Thunnus thynnus L.) catch composition in the Tyrrhenian Sea and in the Strait of Sicily in 2002 and 2003. SCRS/2004/099, ICCAT Coll. Vol. Sci. Pap., 58(4), 2005: 1296-1336.

Di Natale A, Mangano A., Asaro A., Bascone M., Celona A., Valastro M., Vassallo Ajus R., 2006b - Bluefin tuna (Thunnus thynnus L.) catch composition in the Tyrrhenian Sea and in the Strait of Sicily in 2004. SCRS/2005/091, ICCAT Coll. Vol. Sci. Pap., 59(3), 2006: 829-842.

Di Natale A, Mangano A., Asaro A., Bascone M., Celona A., Valastro M., Zava B., 2002 – Size frequency composition of the Bluefin Tuna catches in the Tyrrhenian Sea and in the Straits of Sicily in the period 1998-2001. ICCAT/GFCM Expert Consultation, Malta, in press, SCRS/02/46, ICCAT Coll. Vol. Sci. Pap.: 28 p.

Di Natale A, Mangano A., Celona A., 2005c - “Resident” and “Migrant” bluefin tunas (Thunnus thynnus L.) in the Straits of Messina. Series of old and recent data. First History of Marine Animal Populations - Mediterranean Workshop - CSIC, Barcelona, 20-22 Sept. 2004.

Di Natale A, Mangano A., Navarra E., Valastro M., 1996 - Osservazioni sulla pesca dei grandi Scombroidei nei bacini tirrenici e dello Stretto di Sicilia. Rapporto alla Direzione Generale Pesca ed Acquacoltura, Ministero delle Risorse Agricole, Alimentari e Forestali, Roma: 380 p.

Di Natale A, Mangano A.., Navarra E., Valastro M., 1998 - Osservazioni sulla pesca dei grandi Scombroidei nei bacini tirrenici e dello Stretto di Sicilia. In. Le Ricerche sulla Pesca e sull'Acquacoltura nell'Ambito della Legge 41/82. Parte 1. M.P.A., Roma: 189-198.

Di Natale A, Mangano A., Piccinetti C., Ciavaglia E., Celona A., 2005d - Bluefin tuna (Thunnus thynnus L.) line fisheries in the Italian seas. Old and recent data. SCRS/2004/098, ICCAT Coll. Vol. Sci. Pap., 58(4), 2005: 1285-1295.

Di Natale A, Mangano A., Vassallo Ajus R., 2006c - Bluefin tuna (Thunnus thynnus L.) size composition in cages from the Tyrrhenian Sea and in the Strait of Sicily in 2004. SCRS/2005/162, ICCAT Coll. Vol. Sci. Pap., 59(3), 2006: 851-857.

Di Natale A, Notarbartolo di Sciara G., 1994 - A review of the passive fishing nets and traps used in the Mediterranean Sea and of their Cetacean by-catch. In: Gillnets and Cetaceans. IUCN-IWC Workshop on Cetacean Mortality, La Jolla (USA), Oct. 1990. Rep. Int. Whal. Commn. (Special Issue), 15: 189-202.

Doumenge F. 1998 - L’histoire des pêches thonières. ICCAT/SCRS Col. Vol. Sci. Pap. 50: 753–802.

Duhamel de Monceau H.L., 1769-1782 – Traite général de Pêches et histoire des Poissons. Saillant & Nyon/Desaint, Paris, 4 vol.

Ely B., Stoner D.S., Bremer A.J., Dean J.M., Addis P., Cau A., Thelen E.J., Jones W.J., Black D.E., Smith L., Scott K., Naseri I., Quattro J.M., 2002 - Analyses of nuclear IdhA gene and mtDNA control region sequences of Atlantic northen bluefin tuna populations. Mar. Biotechnol. 4: 583-588.

Esopo F., 1592 - Piscatorius. In : Aesopi Phrygis et Aliorum Fabulae. Elegantissimis Iconibus in gratiam studiose iuventutis illustrate, pluribusq. aucte, & diligentius quam ante hac emendata. Com Indice locupletissimo. Ioannen Fiorinam, Firenze: 282.

Farrugio H., 1978 – Estimation de la composition demografique de la pêcherie de surface au thon rouge en Méditerranée francaise de 1969 à 1976. ICCAT/SCRS Coll. Vol. Sci. Pap.,7(2): 352-354.

Farrugio H., 1979 - La peche du Thon rouge en Méditerranée francaise: evolution et characteristiques. ICCAT/SCRS, Coll.Vol.Sci.Pap., 11 : 235-225.

Farrugio H., 1980 – Etude de l’évolution du stock du thon rouge de 1 à 12 ans en Est Atlantique et Méditerranée de 1966 à 1978 par analyse de cohortes. ICCAT/SCRS Coll. Vol. Sci. Pap., 15(2): 313-319.

Ferraro S., 1986 – A proposito della pesca dei Cetaresi. Appunti per la Storia di Cava, De Rosa e Memoli ed., Cava dei Tirreni (NA): 1-5.

Frade F., 1925 – Sur l’anatomie de deux poissons scombériformes : Thunnus thynnus (L.) et Auxis thazard (Lacép.). Bull. Soc. Portugaise Sc. Nat., X(1).

Fromentin J.M., 2002 – Can stochastic variation in recruitment induce long term fluctuation in the carrying capacity? ICCAT.SCRS, Col. Vol. Sci. Pap., 54: 985-981.

Fromentin J.-M., 2003 - Why uncertainty in the management of the East Atlantic Bluefin tuna has constantly increased in the past few years. Scientia Marina, 67(1): 51-62.

Fromentin J.M., Farrugio H., Deflorio M., De Metrio G., 2003 – Preliminary results of aerial surveys of bluefin tuna in the western Mediterranean Sea. ICCAT-SCRS Coll. Vol. SCi. Pap., 55(3): 1019-1027.

Fromentin J.M., Fonteneau A., Farrugio H., 2000 - Biological key reference points and natural long-term fluctuations: the case of the Atlantic bluefin tuna. ICCAT Coll. Vol. Sci. Pap. 51: 2072–2084.

Gaetani C., 1797 - Pescaggioni. Stamp. Vescovile e Senatoria, Don F.M.Pulejo, Siracusa: 1.335.

Gaetani Marchese di Villabianca F.E., 1795 – Le Tonnare di Sicilia. Re-Edited, Edizioni Giada, Palermo, 1986.

Genovese S., 1952 – Osservazioni idrologiche eseguite nella tonnare del Tono (Milazzo) durante la campagna di pesca 1952. Boll.Pesca Piscic.Ocean. VII(2).

Genovese S., 1953a – Sui caratteri biometrici del tonno (Thunnus thynnus L.) tirrenico. Boll.Pesca Piscic.Ocean. VIII(1).

Genovese S., 1953b – Osservazioni idrologiche eseguite nella tonnara Capo San Marco (Sciacca) durante la campagna di pesca 1953. Boll.Pesca Piscic.Ocean. VIII(2).

Genovese S., 1956 – Ulteriori osservazioni sui caratteri biometrici del Tonno (Thunnus thynnus L.) tirrenico. Il tonno intergenetico dello Stretto di Messina. Boll. Pesca Piscic. Idrobiol., 11(1): 83-120.

Genovese S., 1958 – Dati biometrici sul tonno (Thunnus thynnus L.) tirrenico. C.I.E.S.M., Rap. Et Proc.-Verb.Réun., XIV.

Genovese S., 1959 – Ami trovati in tonni (Thunnus thynnus L.) catturati in Sicilia e Calabria. Atti Soc.Pelor.Sc.Fis.Mat.Nat., V(4).

Genovese S., 1960 – Osservazioni eseguite in alcune tonnare del basso Tirreno durante la campagna di pesca 1959. Boll.Pesca Piscic.Ocean. XIV(2).

Genovese S., 1965 – Dati sulla pesca all’amo del tonno nello Stretto di Messina. Boll.Pesca Piscic.Ocean. XX(1): 41-52.

Gesner C., 1606 – Nomenclator Aquatilum Animantium IconesAnimalium in Mari et Dulcibus Aquis Degentium. Tip. Ioannis Lancelloti, Heidelberg: 1-375.

Gordoa A., Borrego J.R., Caillart B., De La Serna J.M., Di Natale A, Franqueza R., Mazaudier L., Ordan M., 2004 – Sport fishing: an informative and economic alternative for tuna fishing in the Mediterranean (SFITUM). Final Report. EC PR 98/0034 Report to the Direction General for Fisheries, European Commission, 320 pp.

Gordoa A., Pilar M.P., Arevalo R., Viñas J., Molí B., Illas X., 2009 - Determination of Atlantic bluefin tuna (Thunnus thynnus) spawning time within a transport cage in the western Mediterranean. ICES Journal of Marine Science, 65.


Grassi, B. 1913. Conflitto tra le tonnare Porto Paglia e Portoscuso contro la Società Anonima Malfidano. Ed. Corsi e Ciarlo, Genova.

Gruvel, 1922 – L’Industrie de pêches en Norvège. Notes et Memoires de l’Off. Sc. Et Tech. des Pêches Marit., Paris, 16.

Guaiana A., 2000 – Il mare in barile. In: Ravazza N.: La terra delle Tonnare. Trapani, Pro Loco San Vito Lo Capo.1996

Guggino E., 1977 – Favignana. Aiamola. Nuove Effemeridi, Ed. Guida, Palermo, IX(34).

Guggino E., Pagano S., 1977 – Mattanza – Ass. per la Conservazione delle Tradizioni Popolari, Palermo.

Heldt H., 1923 - Le thon commun (Orcynus thynnus L.) en mer du Nord. Mémoires Off. Sc. Et Techn. Des Pêches Maritimes, Paris, 22.

Heldt H., 1925 – Résumé de nos connoissances actueles sur le thon rouge (Orcynus thynnus L.). Comm. Int. Pour l’Expl. Scient. De la Médit., Rapp. Proc. Verb. des Réunions, I(n.s.).

Heldt H., 1926 - Résumé de nos connoissances actueles sur le thon rouge (Thunnus thynnus L.). Bull. Sat. Océan., Salambô, Tunis, 5.

Heldt H., 1927 – Le thon rouge, Thunnus thynnus (L.). Mise a jour de nos connaissances sur ce suject. Bull.Stat.Océan, Salammbo (7) ; 1-24.

Heldt H., 1932 – Le thon Rouge et sa peche. Bull. Stat. Ocean. Salammbo, 29 : 1-168.

Hurry G.D., Hayashi M., Maguire J.J.,, 2008 – Report of the independent review of the International Commission for the Conservation of Atlantic Tuna. ICCAT: 1-96.

ICCAT, 1997 – 1996 SCRS detailed report on bluefin tuna. Col. Vol. Sci. Pap., ICCAT, 46: 1-301.

ICCAT, 1999 – 1998 SCRS detailed report on bluefin tuna. Col. Vol. Sci. Pap., ICCAT, 49: 1-191.

ICCAT, 2002 – ICCAT Workshop on bluefin tuna mixing. Col. Vol. Sci. Pap., ICCAT.

Iyigungor D., 1957 - Méthods et Moyens de Pêche au Thon Actuellement en Usage en Turquie. Gen. Fish. Coun. Medit., No. 33: 251-255.

Jones E.C., 1971 – Isistius brasiliensis, a Squaloid Shark, the probable cause of crater wounds on fishes and cetaceans. NOAA/NMFS Fish. Bull., 69: 791-798.

Jonstonius J., 1649 – Historia Naturalis. De Piscibus et Cetis. Matthias Merian Ed., Frankfurt, V: 1-228.

Karakulak F.S. 1999: The Fishing Technology and the Biology of the Bluefin Tunas (Thunnus thynnus L. 1758) in Turkish Waters, (Doctoral thesis), Istanbul University, Istanbul: 1-169.

Karakulak F.S. 2000. The trap nets in and around the Strait of Istanbul. In: Öztürk B., Kadioğlu M., Öztürk H. (eds). “Marmara Sea 2000” Symposium, 11-12 November 2000, Istanbul Turkish Marine Research Foundation (TUDAV), Publication Number No: 5, Istanbul: 426-435.

Karakulak S.F., 2003 – Bluefin tuna fishery in Turkey. Workshop on farming, Management and conservation of bluefin Tuna, 2003, Istanbul: 120-133.

Karakulak S.F., Oray I., 2009 – Remarks on the fluctuation of the bluefin tuna catches in Turkish waters. Col. Vol. Sci. Pap., 63: 153-160.

Karakulak S., Oray I., Corriero A., Deflorio M., Santamaria N., Desantis S., De Metrio G., 2004 - First information on the reproductive biology of the bluefin tuna (Thunnus thynnus) in the eastern Mediterranean. ICCAT/SCRS Coll. Vol. Sci. Pap., 56: 1158-1162.

Kell L., Fromentin J.M., Gauthiez F., Restrepo V., 2000 – A simulation framework to evaluate management strategies for Atlantic tuna: a preliminary example based on East Atlantic bluefin tuna. ICCAT-SCRS Col. Vol. Sci. Pap., 51: 2095-2116.

Kideys A., 2004 – History of marine populations in the Black Sea. Mediterranean History of Marine Animals Populations – HMAT-MED Meeting, Barcelona, 20-22 September: 1-48.

Le Gall, 1926 – La pêche en Norvege. Mémoires Off. Sc. Et Techn. Des Pêches Marit., Paris, 4 (Serie spec.).

Le Marhadour M., 1914 – L’avenir de la pêche hauturière de thon dans la Méditerranèe. VI Congrés Nat. des Pêches Marit., Tunis.

Lemos, R.T., Gomes, J.F., 2004 - Do local environmental factors induce daily and yearly variability in bluefin tuna (Thunnus thynnus) trap catches? Ecol. Model. 177: 143-156.

Li Greci F., Berdar A., Riccobono F., 1991 – Mattanza. Le tonnare messinesi scomparse. Edizioni G.M.B., Messina..

Lippi Guidi A., 1993 – Tonnare. Tonnaroti e malfaraggi della Sicilia sud-orientale. Ed. Zangarastampa, Siracusa.

Liorzou B., Sacchi J., De La Serna J.M., Orsi Relini L., Palandri G., De Metrio G., Di Natale A, Yannopoulos K., Megalofonou P., Bridges C.R., Susca V., 2001 – Major improvements in our knowledge of Eastern Atlantic Bluefin Tuna in the Mediterranean (fisheries, statistics and biology). Final Report. EU PR 97/0029. Rapporto alla D.G. XIV della Commissione Europea. Bruxelles, 250 pp.

Lo Curzio M., Sisci R., 1991 – Tonnare e barche tradizionali in Sicilia. Endas Ed., Messina.

Mackenzie, B.R., Myers, R.A. 2007. The development of the northern European fishery for North Atlantic bluefin tuna Thunnus thynnus during 1900-1950. Fisheries Research. 87: 229-239.

Mackenzie B.R., Mosegaard H., Rosemberg A.A., 2009 – Impeding collapse of bluefin tuna in the northeast Atlantic and Mediterranean. Conservation Letters 2: 25-34.

Maggio T., 2001 – Mattanza. Love and dead in the sea of Sicily. Penguin Books, New York: 1-263.

Manetti R., 2001 – Tonnare Elbane. Alinea Ed., Firenze: 1-186.

Mariotti L., 2003 – Il Tonno. Le Tonnare che parlano Genovese. Feguagiskia Studios Ed., Genova: 1-159.

Mather F.J.III, 1962a – Transatlantic migrations of two large Bluefin tunas. Journal du Conseil, 27(31): 325-327.

Mather F.J.III, 1962b – A preliminary note on migratory tendencies and distributional patterns of Atlantic Bluefin tuna based on recently acquired and cumulative tagging results. ICCAT/SCRS Coll. Vol. Sci. Pap., 9(2): 278-290.

Mather F.J.III, Bartlett M.R., Beckett J.S., 1967 – Transatlantic migrations of young bluefin tuna. Journ. Fish. Res. Bd. Canada, 24: 9.

Mather F.J.III, Mason J.M., Jones A.C., 1974 – Distribution fisheries and life history data relevant to identification of Atlantic Bluefin tuna stock. ICCAT/SCRS Coll. Vol. Sci. Pap., 2: 234-258.

Mather F.J.III, Mason J.M., Jones A.C., 1995 – Life History and Fisheries of Atlantic Bluefin Tuna. NMFS-SEFSC 370.

Mattioli A., 1568 – Discorsi di M. Pietro Andrea Mattioli nelli sei libri di Pedacio Discodoride Anazarbeo della materia Medicinale. Vincenzo Valgrisi Ed., Venezia: 1-655.

Mazzarelli, G. 1917. Conflitto fra tonnare e miniere in Sardegna. Rivista di pesca e Idrobiologia, Anno XI (XVIII), 4: 139-163.

Mazzarelli G., 1935 – Programmi vecchi e nuovi per lo studio del tonno (Thunnus thynnus, L.). Mem. Biol.Mar. Ocean., Messina, III(app.).

McDowell J.R., Diaz-Jaimes P., Graves J.E., 2002 - Isolation and characterization of seven tetranucleotide microsatellite loci from Atlantic Northen bluefin tuna Thunnus thynnus thynnus. MEN 2: 214-216.

Mert I., Oray I.K., Patrona K., Karakulak F.S., Kayabaşı Y., Gündoğdu M., Miyake P., 2000 - Historical review of Turkish bluefin tuna fisheries and their development. Col. Vol. Sci. Pap. ICCAT, 51(3): 813-826.

Militello R., 1937 – Industrie trapanesi. Le Tonnare. In: Opere Pubbliche. Rassegna dello Sviluppo dell’Italia Imperiale. Terra Trapanese nelle realizzazioni fasciste. VII(3-4).

Miyake P.M., De Lça Serna J.M., Di Natale A, Farrugia A., Katavic I., Miyabe N., Ticina V., 2002 – General review of bluefin tuna farming in the Mediterranean area. ICCAT/GFCM Expert Consultation, Malta, ICCAT Coll. Vol. Sci. Pap.: 1-6.

Mondardini G., 1999 – La Tonnara nella cultura marinara. In: Civiltà del Mare. Ed. ICIMAR, Olbia, X(2).

Mongitore A., 1743 – La Sicilia più ricercata nelle cose più memorabili. Palermo (2 vol.).

Morovic D., 1961 – Contribution à la connaissance de la nutrition du thon rouge (Thunnus thynnus L.) dans l’Adriatique, d’après les prises faites à la senne tournate. FAO-GFCM Tech. Pap. Gen. Fish. Couns. Medit., 6 : 155-159.

Naccari F.L., 1827 – Prodromus observationus et disquisitionum Adriaticae Ichthyologiae. Giornale di Fisica, Chimica e Storia Naturale, bim.1 1-23.

Ninni E., 1917 - La pesca nell’Adriatico. Ministero Industria, Comm. E Lavoro, Sez. Pesca, Roma.

Ninni E., 1921a – La comparsa del tonno nel mare e nelle lagune di Venezia e revisione del Gruppo Tonni per l’Adriatico. Regio Comit. Talass. Ital., Venezia.

Ninni E., 1921b – La pesca in Libia, Eritrea e Somalia. Regio Comit. Talass. Ital., Venezia.

Ninni E., 1922 - La migrazione del tonno nei mari di Levante. Boll. Bimestr. R. Com. Talass. Ital., 11: 109–116.

Northridge S., Di Natale A., 1991 - The environmental effects of fisheries in the Mediterranean. Rapporto alla European Commission's Directorate General for the Environment, Nuclear Safety and Civil Protection, EEC, Brussel: 1- 48.

Oppianus, 177 b.C. – Alieuticon. In: Salvini A.M., 1738 – Della Caccia e della Pesca. Firenze: 1-510.

Oray I.K., Karakulak F.S., 2005 - Further evidence of spawning of bluefın tuna (Thunnus thynnus thynnus L., 1758) and the tuna species (Auxis rochei Ris., 1810, Euthynnus alletteratus Raf., 1810) in the eastern Mediterranean Sea: preliminary results of TUNALEV larval survey in 2004. J. Appl. Ichthyol. 21, 236-240.

Oray I., Karakulak S., Alıçlı Z., Ateş C., Kahraman A., 2005 - First evidence of spawning in the eastern Mediterranean Sea: preliminary results of TUNALEV larval survey in 2004. Collect. Vol. Sci. Pap. ICCAT, 58(4): 1341-1347.

Oren O.H., Ben Tuvia A., 1954 – Fishing trip for Tuna. Fishermen’s Bull., Haifa, 1: 10-14. GFCM, Proc. Et Tech. Pap., 5(36): 269-279.

Oren O.H., Ben Tuvia A., 1959 – Experimental tuna fishing cruise in the Eastern Mediterranean. GFCM, Proc. Et Tech. Pap., 5(36): 269-279.

Parona C., 1919 – Il Tonno e la sua pesca. R. Comit. Talass. Ital., Venezia, Mem. LXVIII: 1-259.

Parthenii N., 1689 – Halieutica. Off. Jacobi Raillard, Napoli: 1-148.

Pavesi P., 1889 – L’industria del Tonno. Relazione alla Commissione Reale per le Tonnare. Min. Agric. Indust. Comm., Roma, Tip. Eredi Botta: 1-254.

Piccinetti C., 1973 – Stades larvaires et juveniles des thons en Adriatique. Ichthyologia, 5(1) : 129-134.

Piccinetti C., 1980 – L’allevamento del tonno (Thunnus thynnus L.): situazione in Italia ed in Giappone. Nova Thalassia, 4(suppl): 127-140.

Piccinetti C., 1980 – La pêche du thon rouge an filet tournant en Adriatique. ICCAT/SCRS Coll. Vol. Sci. Pap :, 11 : 232-237.

Piccinetti, C., Piccinetti Manfrin G., 1970 - Osservazioni sulla biologia dei primi stadi giovanili del tonno (Thunnus thynnus L.). Boll. Pesca Piscic. Idrobiol., 25: 223–247.

Piccinetti C., Piccinetti Manfrin G., Dicenta A., 1977 – Premières pêches quantitatives de larves de Thonidae en Adriatique. Rapp. Comm. Int. Mer. Médit., 24: 5-8.

Piccinetti-Manfrin G., Marano G., De Metrio G., Piccinetti C., 1995 - An attempt to find eggs and larvae of bluefin tuna (Thunnus thynnus) in the Black Sea. Collect. Vol. Sci. Pap. ICCAT 44(1): 316-317.

Plinius C.S., 65? (re-edited in 1553) – Historia Mundi. Naturalis Historia. Ed. Antonio Vicentino, Ludguni: 1:882.

Pugnatore G.F., 1595 – Historia di Trapani. Re-Edit. Costanzo S., 1984 - Ed. Corrao, Trapani.

Powell, J. 1996. Fishing in the Prehistoric Aegean. Paul Åströms Förlag, Jonsered, Sweden, 266 pp.

Ravazza N., 1999 – I cancelli del mare. In: Navis, Istiaen Ed., Chioggia, 1.

Ravazza N. (ed.), 2000 – La terra delle Tonnare. Pro Loco San Vito Lo Capo, Trapani.

Ravazza N., 2002 – Le tonnare di Cetaria. In: La Sicilia Ricercata. Bruno Leopardi Edit., Palermo.

Ravazza N., 2003 – Il tonno fatato. In: De Muro G., Doz N., Gente di Tonnara. Fondazione Banco di Sardegna, Sassari.

Ravazza N., 2004 – L’ultima Muciara. Storia della Tonnara di Bonagia. Giuseppe Maurici Ed., Trapani: 1-106.

Ravazza N., 2005 – Diario di Tonnara. Magenes Ed. Milano: 1-330.

Ravier-Mailly C., 2003 – Fluctuation à long terms du thon rouge. Validité, origines et conséquences. These, Ecole Nationale Superieure Agronomique de Rennes, 2003-16, H50 : 1-177.

Ravier C., Fromentin J.M., 2004 - Are the long-term fluctuations in Atlantic bluefin tuna (Thunnus thynnus) population related to environmental changes? Fish. Oceanogr. 13: 145–160.

Rey J. C., 1979 – Interrelations des populations de thon rouge (Thunnus thynnus) entre l’Atlantique et la Méditerranée. Actes Coll. CNEXO, 8 : 87-103.

Rey J.C., 1982 – Considerations on the migrations of tunas in relation to the hydrology of the Strait of Gibraltar. ICCAT/SCRS Coll. Vol. SCi. Pap., 18(3): 758-764.

Richards W.S., 1976 – Spawning of Bluefin tuna (Thunnus thynnus) in the Atlantic Ocean and Adjacent Seas. ICCAT/SCRS Coll. Vol. Sci. Pap., 5(2): 267-278.

Rivas L.R., 1976 – Age composition anomalies as evidence for transoceanic migrations by intermediate age groups of the North Atlantic Bluefin tuna (Thunnus thynnus). ICCAT/SCRS Coll. Vol. Sci. Pap., 6(2): 270-280.

Rodriguez-Roda J., 1964 - Biologia del atùn, Thunnus thynnus (L.), de la costa sudatlantica de España. Investigación Pesqueras, Barcelona 25: 33–146.

Rodriguez-Roda J., 1967 - Fecundidad del atùn, Thunnus thynnus (L.), de la costa sudatlantica de España. Investigación Pesqueras, Barcelona 31(1): 33–52.

Rodriguez-Roda J., 1980 – Nueva rutas en las migraciones transatlanticas del atùn. Iberica, Actualidad Cientifica, 207: 8–10.

Rooker J.R.,Alvarado Bremer J.R., Block B.A., De Metrio G., Corriero A., Kraus R.T., Prince E.D., Rodriguez-Marin E., Secor D.H., 2007 - Life History and Stock Structure of Atlantic Bluefin Tuna (Thunnus thynnus). Review in Fishery Science, 15 : 265-310.

Roule L., 1913 – Observations sur la migration reproductrice du thon commun (Orcynus thynnus L.). Bull. Mus. D’Hist. Natur., Paris.

Roule L., 1914a – La biologie et la pêche du thon dans la Méditerranée occidentale. Revue Générale des Sciences pures et appliquées, Paris, 25.

Roule L., 1914b – Etude préliminaire sur la biologie et la pêche du thon commun (Orcynus thynnus L.) dans la Méditerranée occidentale. VI Congrés Nat. Des Pêches Maritimes, Tunis.

Roule L., 1916a – Sur la migration et la pêche du thon sur not côtes de méditerranéennes. Comp. Ren. Acad. Des Sciences, Paris, 163.

Roule L., 1916b – Observations sur la sténothermie du thon commun. Comp. Rend. De la Soc. De Biologie, Paris, 79.

Roule L., 1917a – Etude sur les aires de ponte et les déplacements périodiques du thon commun (Orcynus thynnus L.) dans la Méditerranée occidentale. Annales Inst. Océan., Paris, VII-7.

Roule L., 1917b – La disparition périodique du thon (Orcynus thynnus L.) dans le golfe du Lion pendant l’année 1916. Bull. Mus. D’Hist. Natur., Paris, 6.

Roule L., 1917c – Sur l’habitat du thon commun (Orcynus thynnus L.) et ses déplacements littoraux dans la Méditerranée occidentale. Comp. Rend. Acad. Des Sciences, Paris, 165.

Roule L., 1918 – Considérations sur la biologie du thon commun (Orcynus thynnus L.). Bull.Inst. Océan., Monaco, 348

Roule L., 1919 – Remarques sur quelques particularitiés biologiques des scombridés de nos côtes. Bull. de la Soc. Zool. De France, Paris.

Roule L., 1921 – Sur les changements périodiques du thon commun (Orcynus thynnus) et sur leur liason avec les conditions du mileu. Com. Rend. Acad. Des Scien., Paris, 173.

Roule L., 1922 – Les poissons migrateurs, leur vie et leur pêche. Ed. Flammarion, Paris.

Roule L., 1923 – Considerations sur l’ecologie abyssale des alevins de thon. Communication au Congrès de Paris, Comm.Int.Expl.de la Mer.

Roule L., 1924a – Variation de la pêche du thon rouge sur les cotes de la Tunisie. Communication au Congrès des Societés Savantes, Dijon.

Roule L., 1924b – Etude sur les déplacements et la pêche du thon en Tunisie et dans la Méditerranée occidentale. Bull. Stat. Ocean. Salmmbo, 2.

Roule L., 1926 – Etude complèmentaire sur le thon de Tunise. Ann. Stat. Océan. Salammbo, 2.

Roule L., 1926 – Sur les déplacemens du thon rouge (Orcynus thynnus L.) dan le bassin occidental de la Méditerranée. Comp. Rend. Acad. Scien., 183(20).

Rubino S., 1995 - La Tonnara Saline. La Celere ed., Alghero.

Safina C., 2001 - Tuna conservation, In Tuna. Physiology, ecology, and evolution, Block BA, Stevens ED (Eds). Fish Physiology Series, vol. 19. Academic Press, San Diego, CA: 413-459.

Sañez Reguart A., 1791 – Diccionario Historico de los Artes de la Pesca Nacional. Imp. Joaquim Ibarra, Madrid, t.1: 1-406.

Salmieri A., 2008 – San Giorgio; Storia di un borgo e la sua Tonnara. Pungitopo Ed., Marina di Patti (ME): 1-149.

Sanzo L., 1909 – Uova e larve di Scomberoidi. Boll. Min. Agric. Ind. Comm., Roma, 8(B).

Sanzo L., 1910 - Studi sulla biologia del tonno (Orcynus thynnus L.). Riv. Mens. Pesca Idrobiol., Pavia (5).

Sarà R., 1963 – Donnés, observations et commentaires sur la présence, le comportement, les characteristiques et les migrations des thons en Méditerranés. FAO, Proc. Gen. Fish. Couns. Medit., 7: 371-388.

Sarà, R., 1973 - Sulla biologia dei tonni (Thunnus thynnus L.) modelli di migrazione e di comportamento. Bolletino di Pesca, Piscicoltura e Idrobiologia, 28: 217-243.

Sarà, R., 1980 - La pêche du thon au thonaire en Méditerranée. ICCAT-SCRS, Col. Vol. Sci. Pap., 9: 129-144.

Sarà R., 1983 – Tonni e Tonnare. Libera Università di Trapani Ed., Trapani: 1-128.

Sarà R., 1988 – Dal mito all’aliscafo. Storie di Tonni e Tonnare. Banca Aegusea Ed., Favignana-Palermo.

Sarmiento, F. M., 1757 - De los atunes y sus transmigraciones y conjesturas sobre la decadencia de las almadrabas y sobre los medios para restituirlas. Caixa de Pontevedra, Madrid.

Scaccini A., 1965 – Biologia e pesca dei tonni dei mari italiani. Mem. Min. Mar. Merc., 12: 1-100.

Scaccini A., Biancalana T., 1959 – Les methodes de peche au thon en Italie et la pêche pelagique au filet tournant. FAO Proc. Gen. Fish. Comm. Médit., 5: 465-473.

Scordia C., 1925 – Le condizioni fisico-biologiche delle acque della tonnara del Tono (Milazzo) durante la campagna di pesca del 1929. Boll. Ist. Zool. Univ. Messina, 4.

Scordia C., 1930 – Per la biologia del tonno (Thunnus thynnus, L.). XVI. Osservazioni eseguite nella tonnara del Tono (Milazzo, Sicilia) e dell’Angitola (Pizzo, Calabria) durante il mese di Giugno del 1929. Mem. Biol. Mar. Ocean., Messina, I(1).

Scordia C., 1931 – Per la biologia del tonno (Thunnus thynnus, L.). XVI. Osservazioni eseguite nella tonnara di Bivona (Vibo Valentia Marina, Calabria) nel Maggio- Giugno del 1930. Mem. Biol. Mar. Ocean., Messina, I(3).

Scordia C., 1933 – Per la biologia del tonno (Thunnus thynnus, L.). IV. Osservazioni eseguite nelle tonnare di Bivona e di Pizzo (Calabria) nel Maggio-Giugno 1931. Mem. Biol. Mar. Ocean., Messina, II(2).

Scordia C., 1934a – Per la biologia del tonno (Thunnus thynnus, L.). V. Osservazioni eseguite nella tonnara di Bivona (Calabria) nel Giugno 1932, con riferimenti alle tonnare di Pizzo e di Mezzapraia. Mem. Biol. Mar. Ocean., Messina, III(1).

Scordia C., 1934b – Ulteriori osservazioni sui tonni dello Stretto di Messina. Mem. Biol. Mar. Ocean., Messina, III(2).

Scordia C., 1934c – Per la biologia del tonno (Thunnus thynnus, L.). VII. Ricerche preliminari sulla quantità e sulla distribuzione delle sostanze grasse contenute nelle gonadi e nel fegato dei tonni intergenetici. Mem. Biol. Mar. Ocean., Messina, III(3).

Scordia C., 1935a – Per la biologia del tonno (Thunnus thynnus, L.). VIII. Osservazioni sui tonni dello Stretto di Messina eseguite nell’annata 1934-35. Mem. Biol. Mar. Ocean., Messina, IV(2).

Scordia C., 1935b – Per la biologia del tonno (Thunnus thynnus, L.). X. Sul percorso di ritorno dei tonni genetici dal mare Jonio. Mem. Biol. Mar. Ocean., Messina, IV(5).

Scordia C., 1936a – Su alcune recenti pubblicazioni sulla biologia del Tonno. Mem. Biol. Mar. Ocean., Messina, II(suppl).

Scordia C., 1936b – Gli ami per la pesca del tonno in uso nello Stretto di Messina. Mem. Biol. Mar. Ocean., Messina, IV(1), suppl.

Scordia C., 1936c – Per la biologia del tonno (Thunnus thynnus, L.). IX. Brevi osservazioni eseguite in una tonnara di Pizzo (Calabria) in Giugno 1934. Mem. Biol. Mar. Ocean., Messina, IV(4).

Scordia C., 1937a – Per la biologia del tonno (Thunnus thynnus, L.). XII. Intorno al passaggio dei tonni di corsa dal Tirreno nel Jonio attraverso lo Stretto di Messina. Mem. Biol. Mar. Ocean., Messina, V(5).

Scordia C., 1937b – Per la biologia del tonno (Thunnus thynnus, L.). XIII. La quantità delle sostanze grasse contenute nel fegato e nelle gonadi nei vari periodi del ciclo genetico. Mem. Biol. Mar. Ocean., Messina, V(6).

Scordia C., 1937c – Per la biologia del tonno (Thunnus thynnus, L.). XIV. Osservazioni eseguite in una tonnara di ritorno (Santa Panagia, Siracusa) nel Luglio 1935. Mem. Biol. Mar. Ocean., Messina, V(7).

Scordia C., 1938a – Per la biologia del tonno (Thunnus thynnus, L.). XV. Le migrazioni dei tonni entro il Mediterraneo. Mem. Biol. Mar. Ocean., Messina, 1938.

Scordia C., 1938b – Ricerche sull’età del tonno (Thunnus thynnus, L.) eseguite mediante lo studio delle squame.. Mem. Biol. Mar. Ocean., Messina, V(10).

Scordia C., 1939a – Notizie sulla migrazione dei tonni del basso Adriatico. Mem. Biol. Mar. Ocean., Messina, VI(1).

Scordia C., 1939b – Per la biologia del tonno (Thunnus thynnus, L.). XVI. Osservazioni eseguite in una tonnara di ritorno (Santa Panagia, Siracusa) nel Luglio 1936. Mem. Biol. Mar. Ocean., Messina, VI(3).

Scordia C., 1939c – La biologia del tonno secondo Le Danois. Mem. Biol. Mar. Ocean., Messina, VI(4).

Scordia C., 1940a – Il prodotto delle grandi pesche primaverili ed estivo-autunnali nello Stretto di Messina ed adiacenze tirreniche durante il 1939. Boll.Pesca Piscic. Ocean. 4.

Scordia C., 1940b – Le migrazioni dei tonni Jonici e la entrata di essi in tonnara. Atti 2* Conv.Biol:Mar.e Applic., Messina, 1939.

Sechi V., 1918 – Tonnare e mattanze Sarde. Touring Club Ital., Maggio 1918: 101-106.

Sella M., 1924 – Caratteri differenziali dei giovani stadi di Orcynus thynnus L., O. alalonga, Auxis bisus Bp. Atti R. Accad. Dei Lincei, Roma, t. 33.

Sella M., 1926 – Le migrazioni dei tonni studiate per mezzo degli ami. Atti R. Accad. Dei Lincei, Roma, III, ser.6, 1 sem.(II).

Sella M., 1926 – Altri fatti sopra la migrazione dei tonni accertati per mezzo degli ami. Rend. Reale Accad. Dei Lincei, Roma, IV, ser.6, 2 sem.(5-6).

Sella M., 1929 – Migrazioni ed habitat del tonno (Thunnus thynnus L.) studiati col metodo degli ami, con osservazioni sull’accrescimento, sul regime delle tonnare, ecc. Mem. R.Com.Talass.Ital., 7: 24.

Spagnolio E., 1938 – Ricerche sull’età del tonno (Thunnus thynnus, L.) eseguite mediante lo studio delle squame. XVI. Mem. Biol.Mar. Ocean., Messina, V(10).

Takagi M., Okamura T., Chow S., Tanaguchi N., 1999 - PCR primers for microsatellite loci in tuna species of the genus Thunnus and its application for population genetic study. Fish. Sci. 65: 571-576.

Tekin O., 2000 - Golden Horn and the Tunas of Istanbul. Istanbul Dergisi, Sayı 32 Golden Horn, Istanbul: 92-94.

Volpi Lisjak B., 1996 – La spettacolare pesca del tonno attraverso i secoli nel Golfo di Trieste. Mladika Ed., Trieste.

Zaitsev Y., 2003 – Bluefin tuna in the Black Sea. Workshop on farming, Management and conservation of bluefin Tuna, 2003, Istanbul: 118-119.

Zaitsev Y., Mamaiev V., 1997 – Biological diversity in the Black Sea. A study of change and decline. United Nations Publications, Black Sea Environment Series, 3: 1-204.



1 Aquastudio Research Institute, Via Trapani 6, 98121 Messina, Italy

2 The authors apologises for all the omissions in the bibliography, due to time constrains that prevented mostly a deep analysis of the many scientific papers presented to SCRS-ICCAT in the last decades, which have been anyway considered in the text. The literature included in this text is mostly dedicated to papers which are often forgotten or other relevant scientific works. Each omission is not by deliberate will.

3 It was decide to use “East Adriatic” to include all the tuna traps noticed in various Countries of that coast, because the mane and boundaries were modified many times over the last century.

4 It seems that Morocco had some active tuna traps at that time, but this information was not included in the reviews from Pavesi and Parona and it is possible included in some Portuguese archives.

5 In recent times, with the partial improvement of the environmental situation in the Black Sea, bluefin tuna is slowly reappearing in that basin. In 2007, late in November, a few specimens were caught in the Marmara Sea and in the nearest areas of the Black Sea. In the same period, juveniles having a size (about 700 g) much lower that the usual size at that time of the year were found on the market in Istanbul, providing the evidence of a possible reproduction in areas having a temperature colder than in other Mediterranean areas.

6 The aerial spotting for fishing bluefin tuna is banned in the Mediterranean since 2006.

7 The level of subtraction of bluefin tuna from the Japanese longlines was very high. It was possible to detect about 30 tons of stolen bluefin tuna in only one harbour in one single year.

8 The paper from Bearzi et al, 2006, pointing out the strong decreasing of bluefin tuna in the Ionian Sea, is based on an assessment by “sightings of BFT” in a very small part of the Ionian Sea from an inflatable boat and for a couple of years, applying the same methodology used for marine Mammals and without considering the fundamental behavioural difference between a marine mammal and a fish! The same author, in a previous work, assessed the abundance of small pelagic species in an island in Greece by counting the fish scales floating at the surface, collecting them with a small net. This last assessment was taken as the scientific evidence to support the hypothesis of a food shortage for Tursiops truncatus and then to request a IUCN specific status in the Red List.

9 This estimated level, obtained by extrapolating the known catch from several traps to the total number of the traps known in the Mediterranean Sea, is very close to the maximum estimated catch obtained by SCRS for the East Atlantic bluefin tuna stock in recent times.

10 The fishing season in 2009 was conducted with a 100% observers coverage of the EU purse seine fleet and 20% observers coverage of the longline fleet, while many inspections have been conducted at sea by national and international patrol vessels. The tuna cages in EU countries had 100% observers coverage. Many tuna vessels were blocked at the harbours for compliance issues and the effective EU fleet was largely reduced. The purse-sine fishing season was limited by bad weather situations, but vessel were able to catch the individual quota in a very short time, due to the availability of the resource at sea.

11 Total bluefin tuna catches might be in the order of not more than 2 tons per year.

Download 2.36 Mb.

Share with your friends:
1   2   3




The database is protected by copyright ©ininet.org 2024
send message

    Main page