Cullen D E 2000 Program EPICSHOW: A computer code to allow interactive viewing of the EPIC data libraries (Version 2000-1) UCRL-ID-1264455 (Lawrence Livermore National Laboratory)
Cullen D E 1992 Program RELAX: A code designed to calculate X-ray and electron emission spectra as singly charged atoms relax back to neutrality UCRL-ID-110438 (Lawrence Livermore National Laboratory)
Cullen D E, Hubbell J H and Kissel L D 1997 EPDL97: The evaluated photon data library UCRL-50400 6 (Lawrence Livermore National Laboratory)
Davisson C M and Evans R D 1952 Gamma-ray absorption coefficients Rev. Mod. Phys. 24 79-107
Fano U 1956 Atomic theory of electromagnetic interactions in dense materials Phys. Rev. 103 1202-18
Fano U 1963 Penetration of protons, alpha particles and mesons Ann. Rev. Nucl. Sci. 13 1-66
Fano U and Cooper J W 1968 Spectral distribution of atomic oscillator strengths Rev. Mod. Phys. 40 441-507
Fewell T R and Shuping R E 1978 Handbook of Mammographic X-ray Spectra (New York: HEW)
Fourkal E, Lachaine M and Fallone B G 2001 Signal formation in amorphous-Se-based x-ray detectors Phys. Rev. B 63 195204
Green N J B, LaVerne J A and Mozumder A 1988 Differential track structure of electrons in liquid water Radiat. Phys. Chem. 32 99-103
Hamm R H et al 1985 Radiat. Res. 104
Haugen C, Kasap S O and Rowlands J A 1999 Charge transport and electron¨Chole pair creation energy in stabilized a-Se x-ray photoconductors J. Phys. D: Appl. Phys. 32 200-7
Haus A G and Yaffe M J 2000 Screen-film and digital mammography. Image quality and radiation dose considerations Radiol. Clin. North. Am. 38 871-98
Hubbell J H, Veigele W J, Briggs E A, Brown R T, Cromer D T and Howerton R J 1975 Atomic form factors, incoherent scattering functions, and photon scattering cross sections J. Phys. Chem. Ref. Data 4 471¨C538
Huda W, Sajewicz A M, Ogden K M, Dance D R 2003 Experimental investigation of the dose and image quality characteristics of a digital mammography imaging system Med. Phys. 30 442-8
Hunt D C, Kirby S S and Rowlands J A 2002 X-ray imaging with amorphous selenium: X-ray to charge conversion gain and avalanche multiplication gain Med. Phys. 29 2464-71
ICRP 1991 Recommendations of the International Commission on Radiological Protection (ICRP Publication 60) (Oxford: Pergamon)
Inokuti M 1971 Inelastic collisions of fast charged particles with atoms and molecules- The Bethe theory revisited 43 297-347
Jaffe G 1913 Zur Theorie der Ionisation in Kolonnen Ann. Phys. 43 303-44
Jahnke A and Matz R 1999 Signal formation and decay in CdTe x-ray detectors under intense irradiation Med. Phys. 26 38-48
Kabir M Z 2005 Modeling of x-ray photoconductors for x-ray image detectors Ph.D. thesis (available online)
Kabir M Z and Kasap S O 2002a Charge collection and absorption-limited sensitivity of x-ray photoconductors: Applications to a-Se and HgI2 Appl. Phys. Lett. 80 1664-6
Kabir M Z and Kasap S O 2002b Sensitivity of x-ray photoconductors: Charge trapping and absorption limited universal sensitivity curves J. Vac. Sci. Technol. A 20 1082-6
Kabir M Z and Kasap S O 2004 Charge collection and absorption-limited x-ray sensitivity of pixellated x-ray detectors J. Vac. Sci. Technol. A 22 975-80
Kasap S O 1991 Handbook of imaging materials ed A S Diamond (New York: Marcel Decker) pp 329-77
Kasap S O 2002 Principles of electronic materials and devices 2nd edition (McGraw-Hill, New York, 2002), chapter 1
Kasap S O 2000 X-ray sensitivity of photoconductors: application to stabilized a-Se J. Phys. D: Appl. Phys. 33 2853¨C65
Kasap S O, Fogal B, Kabir M Z, Johanson R E and O’Leary S 2004 Recombination of drifting holes with trapped electrons in stabilized a-Se photoconductors: Langevin recombination Appl. Phys. Lett. 84 1991-3
Kasap S O and Rowlands J A 2002a Direct conversion flat-panel x-ray image sensors for digital radiography IEE Proc. 90 591-604
Kasap S O and Rowlands J A 2002b Direct conversion flat-panel x-ray image detectors IEE Proc. ¨C Circuits Devices Syst. 149 85-96
Kasap S O and Rowlands J A 2000 X-ray photoconductors and stabilized a-Se for direct conversion digital flat-panel X-ray image-detectors J. Mater. Sci.: Mater. Electron. 11 179-98
Klein C A 1968 Bandgap dependence and related features of radiation ionization energies in semiconductors J. Appl. Phys. 39 2029-38
Knights J C and Davis E A, 1975 J. Phys. Chem. Solids 35 543
Lachaine M and Fallone B G 2000a Calculation of inelastic cross-sections for the interaction of electrons with amorphous selenium J. Phys. D: Appl. Phys. 33 551-5
Lachaine M and Fallone B G 2000b Monte Carlo simulations of x-ray induced recombination in amorphous selenium J. Phys. D: Appl. Phys. 33 1417-23
La Verne J A Pimblott S M 1995 Electron energy loss distributions in solid and gaseous hydrocarbons J. Phys. Chem. 99 10540-8
Law J 2006 The development of mammography Phys. Med. Biol. 51 R155-67
Lewin J M et al 2001 Comparison of full-field digital mammography with screen-film mammography for cancer detection: results of 4.945 paired examinations Radiology 218 873-80
Lui B J M, Hunt D C, Reznik A, Tanioka K and Rowlands J A 2006 X-ray imaging with amorphous selenium: Pulse height measurements of avalanche gain fluctuations Med. Phys. 33 3183-92
Mah D, Rowlands J A and Rawlinson J A 1998 Sensitivity of amorphous selenium to x rays from 40 kVp to 18 MV: measurements and implications for portal imaging Med. Phys. 25 444-56
Mainprize J G, Hunt D C and Yaffe M J 2002 Direct conversion detectors: The effect of incomplete charge collection on detective quantum efficiency Med. Phys. 29 976-90
Miyajima S 2003 Thin CdTe detector in diagnostic x-ray spectroscopy Med. Phys. 30 771-7
Miyajima S, Sakuragi H and Matsumoto M 2002 Extraction of mean free path of charge carriers in CdZnTe crystals from measured full-energy peaks Nucl. Instr. and Meth. A 485 533-8
Morin R L, Raeside D E, Goin J E, Widman J C and Williamson J F 1988 Monte Carlo simulation in radiological sciences chapters 1-4 (Morin R L, Florida CRC press)
Mott N F and Massey H S W 1965 The Theory of Atomic Collisions 3rd edition (Oxford Univ. Press, London)
Nesdoly M T A 1999 X-ray sensitivity and x-ray induced charge transport changes in stabilized a-Se films Ph.D. thesis (available online)
Obenauer S, Luftner-Nagel S, von Heyden D, Munzel U, Baum F, Grabble E 2002 Screen film vs full-field digital mammography: image quality, detectability and characterization of lesions Eur. Radiol. 12 1697-702
Onsager L 1938 Initial recombination of ions Phys. Rev. 54 554-7
Pai D M and Enck R C 1975 Onsager mechanism of photogeneration in amorphous selenium Phys. Rev. B 11 5163-74
Pang G, Zhao W and Rowlands J A 1998 Digital radiology using active matrix readout of amorphous selenium: geometrical and effective fill factors Med. Phys. 25 1636-46
Perkins S T, Cullen D E and Seltzer S M 1991 Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL evaluated electron data library (EEDL) Z=1-100 UCRL-50400 31 (Lawrence Livermore National Laboratory)
Perkins S T et al 1991 Tables and graphs of atomic subshell and relaxation data derived from the LLNL evaluated atomic data library (EADL) Z = 1 - 100 UCRL-50400 30 (Lawrence Livermore National Laboratory)
Pimblott S M, LaVerne J A and Mozumder A Monte Carlo simulation of range and energy deposition by electrons in gaseous and liquid water J. Phys. Chem. 100 8595-8606
Pines D and Bohm D 1952 A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions Phys. Rev. 85 338-53
Pisano E D and Yaffe M J 2005 Digital mammography Radiology 234 353-62
Press W H, Teukolsky S A, Vetterling W T and Flannery B P Numerical recipes in fortran 77: the art of scientific computing Vol.1 (Cambridge University Press, ISBN:0-521-43064-X)
Que W and Rowlands J A 1995a X-ray imaging using amorphous selenium: inherent spatial resolution Med. Phys. 22 365-74
Que W and Rowlands J A 1995b X-ray photogeneration in a-Se: geminate vs columnar recombination Phys. Rev. B 51 10500-7
Ritchie R H 1959 Interaction of charged particles with a degenerate Fermi-Dirac electron gas Phys. Rev. 114 644-54
Rowlands J A, DeCrescenzo G and Araj N 1992 X-ray imaging using amorphous selenium: determination of x-ray sensitivity by pulse height spectroscopy Med. Phys. 19 1065¨C70
Säbel M and Aichinger H 1996 Recent developments in breast imaging Phys. Med. Biol. 41 315-68
Sakellaris T, Spyrou G, Tzanakos G and Panayiotakis G 2005 Monte Carlo simulation of primary electron production inside an a-selenium detector for x-ray mammography: physics Phys. Med. Biol. 50 3717-38
Sakellaris T, Spyrou G, Tzanakos G and Panayiotakis G 2007 Energy, angular and spatial distributions of primary electrons inside photoconducting materials for digital mammography: Monte Carlo simulation studies Phys. Med. Biol. 52 6439-60
Sakellaris T, Spyrou G, Tzanakos G and Panayiotakis G 2008 Photon and primary electron arithmetics in photoconductors for digital mammography: Monte Carlo simulation studies Nucl. Instrum. Methods A (accepted)
Salvat F, Fernandez-Varea J M and Sempau J 2003 PENELOPE, a code system for Monte Carlo simulation of electron and photon transport (Manual, available online)
Salvat F, Martinez J D, Mayol R and Parellada J 1987 Analytical Dirac-Hartree-Fock-Slater screening function for atoms (Z=1-92) Phys. Rev. A 36 467-74
Salvat F, Mayol R and Martinez J D 1987 Elastic scattering of electrons by atoms: a semiphenomenological approach J. Phys. B: At. Mol. Phys. 20 6597-6612
Salvat F, Mayol R, Molins E and Parellada J 1985 A simple model for electron scattering: elastic cross sections J. Phys. D: Appl. Phys. 18 1401-14
Samei E and Flynn M J 2003 An experimental comparison of detector performance for direct and indirect digital radiography systems Med. Phys. 30 608-22
Sato G, Takahashi T, Sugiho M, Kouda M, Mitani T, Nakazawa K, Okada Y and Watanabe S 2002 Characterization of CdTe/CdZnTe Detectors IEEE Trans. Nucl. Sci. 49 1258-63
Saunders Jr R S, Samei E and Hoeschen C 2004 Impact of resolution and noise characteristics of digital radiographic detectors on the detectability of lung nodules Med. Phys. 31 1603-13
Shimizu R and Ze-Jun D 1992 Monte Carlo modeling of electron-solid interactions Rep. Prog. Phys. 487-531
Simon M, Ford R A, Franklin A R, Grabowski S P, Mensor B, Much G, Nascetti A, Overdick M, Powell M J and Wiechert D U 2004 PbO as direct conversion x-ray detector material Proc. SPIE 5368 188-99
Spyrou G, Panayiotakis G and Tzanakos G 2000 MASTOS: MAmmography Simulation Tool for design Optimization Studies Medical Informatics and the Internet in Medline 25 275-93
Spyrou G, Tzanakos G, Bakas A and Panayiotakis G 1998 Monte Carlo Simulated mammograms: development and validation Phys. Med. Biol. 43 3341-57
Spyrou G, Tzanakos G, Nikiforides G and Panayiotakis G 2002 A Monte Carlo simulation model of mammographic imaging with X-ray sources of finite dimensions Phys. Med. Biol. 47 917-33
Steciw S, Stanescu T, Rathee S and Fallone B G 2002 Sensitivity reduction in biased amorphous selenium photoconductors J. Phys. D: Appl. Phys. 35 2716-22
Sternheimer R M 1952 The density effect for the ionization loss in various materials Phys. Rev. 88 851-9
Stone M F, Zhao W, Jacak B V, O' Connor P, Yu B and Rehak P 2002 The x-ray sensitivity of amorphous selenium for mammography Med. Phys. 29 319-24
Storm E and Israel H 1970 Photon cross sections from 1 keV to 100 MeV for elements z=1 to z=100 Nucl. Data Tables A 7 565¨C681
Street R A, Ready S E, Lemmi F, Shah K S, Bennett P and Dmitriyev Y 1999 Electronic transport in polycrystalline Pbl2 films J. Appl. Phys. 86 2660-7
Street R A, Ready S E, Van Schuylenbergh K, Ho J, Boyce J B, Nylen P, Shah K, Melekhov L and Hermon H 2002 Comparison of PbI2 and HgI2 for direct detection active matrix x-ray image sensors J. Appl. Phys. 91 3345-55
Su Z, Antonuk L E, El-Mohri Y, Hu L, Du H, Sawant A, Li Y, Wang Y, Yamamoto J and Zhao Q 2005 Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions Phys. Med. Biol. 50 2907-28
Walker D W 1971 Relativistic effects in low energy electron scattering from atoms Adv. Phys. 20 257-323
Yaffe M J 1995 Mammography (Bronjino J D, The Biomedical Engineering Handbook, CRC Press and IEEE Press) 972-89
Yaffe M J and Rowlands J A 1997 X-ray detectors for digital radiography Phys. Med. Biol. 42 1-39
Zentai G, Partain L, Pavlyuchkova R, Proano C, Breen B N, Taieb A, Dagan O, Schieber M, Gilboa H and Thomas J 2004 Mercuric iodide medical imagers for low exposure radiography and fluoroscopy Proc. SPIE 5368 200-10
Zentai G et al 2003 Mercuric iodide and lead iodide x-ray detectors for radiographic and fluoroscopic medical imaging Proc. SPIE 5030 77-91
Zhao B and Zhao W 2005 Temporal performance of amorphous selenium mammography detectors Med. Phys. 32 128-36
Zhao W, Blevis I, Germann S and Rowlands J A 1997 Digital radiology using active matrix readout of amorphous selenium: construction and evaluation of a prototype real-time detector Med. Phys. 24 1834-43
Zhao W, DeCrescenzo G, Kasap S O and Rowlands J A 2005 Ghosting caused by bulk charge trapping in direct conversion flat-panel detectors using amorphous selenium Med. Phys. 32 488-500
Zhao W and Law J 1998 Digital radiology using active matrix readout of amorphous selenium: Detectors with high voltage protection Med. Phys. 25 539-49
Zhao W and Rowlands J A 1997 Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency Med. Phys. 24 1819-33
Zhao W and Rowlands J A 1995 X-ray imaging using amorphous selenium: feasibility of a flat panel self-scanned detector for digital radiology Med. Phys. 22 1595-604
Abstract
The quality of the mammographic image is directly related to its characteristics. The x-ray induced primary electrons inside the photoconductor of direct conversion digital flat panel mammographic detectors, comprise the primary signal which propagates in the material and forms the final signal (image). Consequently, the characteristics of the mammographic image strongly depend on the characteristics of the primary electrons. In this PhD thesis an investigation is carried out concerning the primary signal formation processes and the characteristics of primary electrons inside a-Se, a-As2Se3, GaSe, GaAs, Ge, CdTe, CdZnTe, Cd0.8Zn0.2Te, ZnTe, PbO, TlBr, PbI2 and HgI2, which are suitable photoconducting materials for direct detectors. In addition, for the case of a-Se a first study is made concerning the correlation between the characteristics of primary and final signal as well as the electric field distribution and the electron interaction mechanisms, two crucial parameters of a prospective model that would simulate the final signal formation.
A Monte Carlo model that simulates the primary electron production inside the photoconductors mentioned, for a number of monoenergetic and polyenergetic x-ray spectra that cover the mammographic energies, has been developed. The model simulates the primary photon interactions (photoelectric absorption, coherent and incoherent scattering), as well as the atomic deexcitations (fluorescent photon production, Auger and Coster-Kronig electron emission). In addition, a mathematical formulation has been developed for the drifting of primary electrons of a-Se in vacuum under the influence of a capacitor’s electric field and the electron characteristics on the collecting electrode are being studied. The formulation is based on the Newton’s equations of motion and the theorem for kinetic energy change. Furthermore, a code has been developed that calculates the distribution of the electric potential inside a-Se, using an existing analytical solution, the boundary values of our case and certain numerical calculation methods. Finally, the structure and the mathematical formulation of a model that would simulate the electron interactions inside a-Se have been developed. An existing model has been reexamined and enriched with certain theoretical considerations and simulation formalisms.
It has been found that for all materials and energies the energy distributions of backwards escaping primary photons resemble the shape of the incident spectrum, while this is not the case for primary photons that escape forwards. Furthermore, the characteristic feature in the primary electron energy distributions for PbI2 and HgI2 is the atomic deexcitation peaks. For the rest of materials the photoelectrons produced from primary photon absorption can also influence the shape of the distributions. The primary electrons prefer to be ejected forwards. In the mammographic energy range, the percentage of electrons being forwards ejected is approximately 60 % with the most probable polar angles ranging from 50o to 70o. In addition, the electrons prefer to be emitted at two lobes around ö=0 and ö=ð. At the practical mammographic energies (15-40 keV) a-Se, a-As2Se3 and Ge have the minimum azimuthal uniformity whereas CdZnTe, Cd0.8Zn0.2Te and CdTe the maximum one. The electron spatial distributions are affected from scatter and the emission of fluorescent photons. The distributions for a-Se, a-As2Se3, GaSe, GaAs, Ge, PbO and TlBr are almost independent on the polyenergetic spectrum while those for CdTe, CdZnTe, Cd0.8Zn0.2Te, ZnTe, PbI2 and HgI2 have a spectrum dependence. In the practical mammographic energy range and at this primitive stage of primary electron production, a-Se has the best inherent spatial resolution. For all the investigated materials and incident energies, the majority of primary electrons is produced within the first 300 ìm from detector’s surface. PbO has the minimum bulk space in which electrons can be produced whereas CdTe has the maximum one. In all materials and incident energies, except for Eµ §30 keV in a-Se, a-As2Se3, GaSe, GaAs and Ge (light materials), photons escape backwards whereas the overwhelming majority is fluorescent photons. The escaping of fluorescent photons and the atomic deexcitation are the factors that affect the primary electron production. The number of primary electrons increases at energies higher than the K edges of light materials, Cd and Te K edges as well as Pb, Hg and Tl L edges where the fluorescent photon escaping decreases and their absorption is followed by long atomic deexcitation cascades. For Eµ §30 keV in the light materials, the number of forwards escaping photons increases, due to the escaping primary photons, and becomes higher than the number of photons that escape backwards. Furthermore, the primary electron production is additionally affected by the escaping of primary photons that decreases the number of electrons. a-Se has the minimum number of primary electrons produced in the practical mammographic energy range. The energy distributions of primary electrons of a-Se that reach the collecting electrode are shifted at slightly higher energies with a small change in their shape. Most of electrons are collected at t<5 x 10-12 s. The majority of electrons is collected at the point of x-ray incidence whereas the xy spatial distributions have two opposing lobes around y=0 as well as a ring of an approximate radius of 2 mm. The azimuthal angles are not affected by the electron drifting while all electrons have polar angles è>ð/2 with the most probable polar angle being è=1.92 rad ~ 111o.
Conclusively, insights are gained into the physics of primary electron production that lead to the investigation of the primary electron characteristics, which strongly influence the characteristics of the final image, and the factors which affect them. The results that concern the electron characteristics on the collecting electrode for the case of a-Se give, at a first approximation, the dependence of the characteristics of the final signal on the characteristics of the primary signal. Nevertheless, a complete simulation of the signal propagation inside the photoconductor’s bulk should be developed in order to derive conclusive remarks on the correlation of primary and final signal characteristics. The basis of developing such a simulation model can be found on the formulations presented for the electric field distribution and the electron interactions inside a-Se.
Åêôåíçò Ðåñéëçøç
Ç ìáóôïãñáößá åßíáé ìÝ÷ñé êáé óÞìåñá ç ðéï óçìáíôéêÞ êáé åõñÝùò äéáäåäïìÝíç áðåéêïíéóôéêÞ ôå÷íéêÞ ôïõ ãõíáéêåßïõ óôÞèïõò. Ç ìáóôïãñáöéêÞ åéêüíá ðñÝðåé íá åßíáé éêáíÞ ü÷é ìüíï íá áðïêáëýðôåé ðïëý ìéêñÝò äéáöïñÝò óýíèåóçò êáé ðõêíüôçôáò éóôïý, áëëÜ ôáõôü÷ñïíá ôçí ðáñïõóßá ôùí áðïôéôáíþóåùí ïé ïðïßåò Ý÷ïõí Ýíá ôõðéêü ìÝãåèïò ãýñù óôá 100 ìm. Åßíáé åìöáíÝò üôé åßíáé áðáñáßôçôï ôüóï ç áíôßèåóç åéêüíáò üóï êáé ç äéáêñéôéêÞ éêáíüôçôá íá äéáôçñïýíôáé óå õøçëÜ åðßðåäá åíþ ôáõôü÷ñïíá ï èüñõâïò íá ðáñáìÝíåé ðåñéïñéóìÝíïò. Åðéðñüóèåôá, ëüãù ôùí êéíäýíùí ïé ïðïßïé õðÜñ÷ïõí êáôÜ ôçí ÷ñÞóç éïíôéæïõóþí áêôéíïâïëéþí, ç äüóç óôï ìáóôü ðñÝðåé íá åßíáé ôüóï ÷áìçëÞ üóï ëïãéêÜ ìðïñåß íá åðéôåõ÷èåß (ALARA).
Óôçí ðñïóðÜèåéá íá ðñáãìáôïðïéçèïýí ïé ðáñáðÜíù áíôéêåéìåíéêïß óôü÷ïé üðùò åðßóçò íá âåëôéùèåß ç åõáéóèçóßá êáé åéäéêüôçôá ôçò ìáóôïãñáöéêÞò äéáäéêáóßáò, ãåãïíüò ôï ïðïßï èá åðÝôñåðå ìßá ðïéü áêñéâÞò êáé ðïéü Ýãêáéñç äéÜãíùóç ôïõ êáñêßíïõ ôïõ ìáóôïý, ç Ýñåõíá åóôéÜæåé: (á) óôç ëåãüìåíç äéÜãíùóç CAD (Computer Aided Diagnosis), ç ïðïßá ó÷åôßæåôáé ìå ôçí åöáñìïãÞ ôå÷íéêþí åðåîåñãáóßáò êáé áíÜëõóçò åéêüíáò áëëÜ êáé ìç÷áíéêÞò üñáóçò óå øçöéïðïéçìÝíåò ìáóôïãñáöéêÝò åéêüíåò, êáé (â) óôç âåëôéóôïðïßçóç ôçò ðïéüôçôáò åéêüíáò ìå ôáõôü÷ñïíç ìåßùóç ôçò äüóçò óôïí ìáóôü ìå ôïí ó÷åäéáóìü êáé ôçí åêëÝðôõíóç åîåéäéêåõìÝíïõ ìáóôïãñáöéêïý åîïðëéóìïý êáé ôïí ðñïóäéïñéóìü ôùí âÝëôéóôùí ëåéôïõñãéêþí ðáñáìÝôñùí åíüò ìáóôïãñÜöïõ. ÐáñÜ ôï ãåãïíüò üôé ç Ýñåõíá CAD ðáñïõóéÜæåé åîáéñåôéêÞ ðñüïäï, ç åðéôõ÷ßá ôçò åîáñôÜôáé áðü ôçí ðïéüôçôá ôçò ìáóôïãñáöéêÞò åéêüíáò ç ïðïßá ëáìâÜíåôáé óôïí áíé÷íåõôÞ åéêüíáò.
Ï áíé÷íåõôÞò åéêüíáò åßíáé Ýíáò áðü ôïõò ðéï êáèïñéóôéêïýò ðáñÜãïíôåò ôçò áðïôåëåóìáôéêüôçôáò ôçò ìáóôïãñáöéêÞò äéáäéêáóßáò. Ç ìáóôïãñáößá ìå óõóôÞìáôá öéëì-åíéó÷õôéêÞò ðéíáêßäáò ðáñáìÝíåé ìÝ÷ñé êáé óÞìåñá ç ðéï äéáäåäïìÝíç ôå÷íéêÞ. Ìåôáîý Üëëùí, ðñïóöÝñåé êáëÞ áðåéêüíéóç äïìþí ÷áìçëÞò áíôßèåóçò ìå åìöáíÞ üñéá. Åíôïýôïéò, ôá óõóôÞìáôá áõôÜ å÷ïõí ðåñéïñéóìÝíï åýñïò Ýêèåóçò (1:25) åíþ ïé ìÜæåò êáé ïé ìéêñïáóâåóôþóåéò, óçìáíôéêÝò åíäåßîåéò ýðáñîçò êáñêßíïõ, äýóêïëá áðåéêïíßæïíôáé óå ðõêíïýò ìáóôïýò.
Ç ðñüóöáôç Ýñåõíá Ýäåéîå üôé ç øçöéáêÞ ìáóôïãñáößá ðñïóöÝñåé âåëôéùìÝíç ðïéüôçôá åéêüíáò óõãêñéôéêÜ ìå ôá óõóôÞìáôá öéëì-åíéó÷õôéêÞò ðéíáêßäáò êáèþò åðßóçò êáëýôåñç êâáíôéêÞ áðïäïôéêüôçôá (quantum efficiency) êáé åõêïëüôåñç ëÞøç, åðåîåñãáóßá êáé áðïèÞêåõóç åéêüíáò. Åðéðñüóèåôá, ïé öùôïáãþãéìïé áíé÷íåõôÝò åíåñãïý ìÞôñáò áðïäåéêíýïíôáé íá õðåñÝ÷ïõí ôùí öùôïäéåãåéñüìåíùí öùóöüñùí (photostimulable phosphors) êáé ôùí óõóêåõþí óõæåõãìÝíïõ öïñôßïõ (Charge Coupled Devices Þ CCDs). Åéäéêüôåñá, ïé öùôïáãþãéìïé áíé÷íåõôÝò åíåñãïý ìÞôñáò Üìåóçò ìåôáôñïðÞò ðáñÝ÷ïõí âåëôéùìÝíç êâáíôéêÞ áðïäïôéêüôçôá, ìåéùìÝíç áóÜöåéá êáé õøçëÞ äéáêñéôéêÞ éêáíüôçôá.
Óôïõò Üìåóïõò áíé÷íåõôÝò åíåñãïý ìÞôñáò, Ýíáò öùôïáãùãüò ìåôáôñÝðåé Üìåóá ôéò ðñïóðßðôïõóåò áêôßíåò × óå íÝöïò öïñôßùí ôï ïðïßï ïëéóèáßíåé êÜôù áðü ôçí åðßäñáóç çëåêôñéêïý ðåäßïõ ðñïò ôá çëåêôñüäéá üðïõ êáé óõëëÝãåôáé ó÷çìáôßæïíôáò ôçí ìáóôïãñáöéêÞ åéêüíá. Ùò åê ôïýôïõ, ôï öùôïáãþãéìï õëéêü åßíáé Ýíáò áðü ôïõò ðéï óçìáíôéêïýò ðáñÜãïíôåò óå áõôÜ ôá óõóôÞìáôá. Ôï Üìïñöï óåëÞíéï (a-Se) åßíáé Ýíá áðü ôá êáôáëëçëüôåñá õëéêÜ êõñßùò ëüãù ôçò éêáíüôçôÜò ôïõ íá áíáðôýóóåôáé óå ìåãÜëåò åðéöÜíåéåò ìå ïìïéïãåíÞ ÷áñáêôçñéóôéêÜ áðåéêüíéóçò êáé ëüãù ôçò õøçëÞò åíäïãåíïýò äéáêñéôéêÞò ôïõ éêáíüôçôáò. Ðáñüëáõôá, ôï õëéêü áõôü ðÜó÷åé áðü ðåñéïñéóìÝíç éêáíüôçôá áðïññüöçóçò áêôßíùí × êáé ìåéùìÝíç åõáéóèçóßá. ÕëéêÜ üðùò ôá a-As2Se3, GaSe, GaAs, Ge, CdTe, CdZnTe, Cd0.8Zn0.2Te, ZnTe, PbO, TlBr, PbI2 êáé HgI2 éêáíïðïéïýí êÜðïéá áðü ôá ÷áñáêôçñéóôéêÜ åíüò éäáíéêïý áíé÷íåõôÞ êáé Ýôóé åßíáé õðïøÞöéá óáí åíáëëáêôéêÞ ëýóç ãéá áõôïý ôïõ åßäïõò ôá óõóôÞìáôá áðåéêüíéóçò. Ìåôáîý áõôþí, ôá ðïëõêñõóôáëëéêÜ CdTe, CdZnTe, Cd0.8Zn0.2Te, PbO, PbI2 êáé HgI2 üðùò êáé ôï Üìïñöï a-As2Se3 åßíáé ïé êáëýôåñïé äõíáôïß õðïøÞöéïé êõñßùò ëüãù ôïõ ãåãïíüôïò üôé ìðïñïýí íá áíáðôõ÷èïýí óå ìåãÜëåò åðéöÜíåéåò. Áðï ôçí Üëëç ôá êñõóôáëëéêÜ GaSe, GaAs, Ge, ZnTe êáé TlBr áíáðôýóóïíôáé óå ðåñéïñéóìÝíåò åðéöÜíåéåò ìå âÜóç ôéò ðáñïýóåò ôå÷íéêÝò êáé Ýôóé åßíáé ëéãüôåñï êáôÜëëçëá. Åíôïýôïéò ïé ôå÷íéêÝò áíÜðôõîçò âåëôéþíïíôáé. 5> Share with your friends: |