4.3. Sensitivity Experiments
Our satellite data constraint technique uses a constant lidar ratio of 39 sr for all the dust aerosols across the study domains for the TC Florence case. However, Omar et al. [2010] calculated the lidar ratio from measurements gathered during numerous DC-8 flights through dust layers throughout the NAMMA campaign in August and September 2006, and they found that the lidar ratio for dust during this time period varied from 35-43 sr. The lidar ratio is important for calculating the extinction profiles from the CALIPSO attenuated backscatter measurements. In addition, even though Chen et al. [2011] found that the imaginary refractive index varied from 0.0015-0.0044 for the dust layers during the NAMMA campaign, our technique uses a constant imaginary index of 0.0022 when conducting the Mie calculations that impact our dust mass concentration values. Thus, we test the sensitivity of the dust mass concentrations to the range of lidar ratios and imaginary indices found during the NAMMA campaign.
Figure 9 shows the percentage difference in the mass concentration values calculated by our technique along the CALIPSO transect on 5 September at 0300 UTC when changing the constant lidar ratio and imaginary index values to 35 sr and 0.0015. We already showed the original mass concentration values when using a constant lidar ratio and imaginary index of 39 sr and 0.0022 (Figure 8a). There is only a slight difference in the mass concentrations throughout the CALIPSO transect as the differences are mostly from 0-2%. Larger differences of 3-5% appear for the dust layers south of 12°N with a couple outlier values greater than 7%. But, for the most part, setting the lidar ratio and imaginary indices to these lower values did not have a significant impact on the results of our technique. Note that the range in the imaginary indices found for the dust layers during the NAMMA campaign had a near negligible impact on our calculated mass concentrations compared to the range in the lidar ratios. Thus, the percentage differences are due almost entirely to using the lower lidar ratio. Also, we do not show the percentage difference results when using the higher lidar ratio and imaginary index of 43 sr and 0.0044 since they are nearly identical to Figure 9.
Table 4 shows the variations of the mass concentration values in the four sectional diameter bins in WRF-Chem when using a lidar ratio of 35, 39, and 43 sr. The results in Table 4 are for the dust layer associated with the higher percentage differences of 3-5% in Figure 9 which is located 3-5 km in height from 9-13°N. The majority of the percentage differences in the total mass concentrations in Figure 9 were caused by the largest diameter bin (Bin 4) as the concentration values varied from 264.4-278.4 μg m-3 for the range of lidar ratios of 35-43 sr. The variation in the concentration values are reduced when moving from the largest to smallest size bins which is expected as the range in lidar ratio will have a greater impact on the higher mass concentrations.
We also conduct a sensitivity test on using the MODIS L3 daily AOD product as opposed to the MODIS L2 instantaneous AOD product. For this sensitivity test, we compare the two AOD products on 2 September 2006 as we initialize our TC Florence simulation on this day at 1200 UTC. The MODIS L3 daily AOD product (Terra and Aqua) on 2 September for the region centered over the WRF-Chem model domain is shown in Figure 10a. The MODIS L2 AOD retrieved from all the available Aqua and Terra overpasses across this region on 2 September is displayed in Figure 10b. All the Aqua and Terra daytime overpasses over this region occur during the daytime between about 1200 and 1800 UTC as AOD is not retrieved at nighttime, and these AOD retrievals are then used to produce the L3 daily product. Thus, we essentially use a +6 hour time window by using the MODIS L3 daily product in our satellite data constraint technique since we initialize and update the WRF-Chem model at 1200 UTC on each day of the simulation. The major advantage of using the MODIS L3 daily product is the greater coverage of AOD across the domain which is clearly seen by comparing Figures 10a-b. However, the greater AOD coverage comes at a cost as the L3 daily product has a much coarser spatial resolution of 1° by 1° compared to the 10 km resolution of the L2 product. The coarser spatial resolution of the L3 daily product could lead to significant discrepancies between the AOD of the two MODIS products. Fortunately, for our TC Florence simulation, the MODIS L2 and L3 products compare closely which suggests that we are not introducing major uncertainties into the model simulation by using the L3 product. An example of the close comparison between the products is displayed in Figure 11. The scatter plot shows a very high correlation of 0.96 between the L2 and L3 AOD on 2 September. The largest differences between the two products occur for AOD > 1.0 which implies that the spatial distribution of the large AOD regions are varying more strongly than the smaller AOD regions. However, overall the two MODIS products agree very closely as the mean AOD across the domain for the L3 and L2 products are 0.37 and 0.34, respectively.
The combined MODIS/GOCART AOD map used to initialize the aerosol fields of the WRF-Chem model on 2 September at 1200 UTC is shown in Figure 12a where the northern half of the domain is mostly filled with MODIS L3 AOD. Figure 12b shows the combined MODIS/GOCART AOD if the L2 product was used in our study. The GOCART AOD covers a significant area of the northern half of the domain in Figure 12b which would introduce major uncertainties into our model simulation as the GOCART AOD is much lower than MODIS across the optically thicker regions of the dust storm. The GOCART model is unable to effectively transport the dust storm across the Atlantic which is leading to the large discrepancies between the GOCART and MODIS AOD. Therefore, the mean AOD across the domain in Figure 12b is only 0.24 while the mean AOD is 0.34 in Figure 12a. Consequently, using the MODIS L2 AOD product instead of the L3 daily product in our satellite data constraint technique will reduce the impact of the aerosol-radiation and aerosol-cloud interaction processes.
5. Summary and Conclusions
In this paper, we present a detailed overview of a technique for applying constraints based on satellite observations to improve the representation of three dimensional dust aerosol fields in WRF-Chem model, to be utilized for studying Saharan dust impact on TCs. Our unique technique combines the aerosol vertical structure from CALIPSO with the horizontal distribution from MODIS and GOCART to derive best estimates of three-dimensional distribution of aerosols, which is important for accurately simulating the impacts of the aerosol-radiation and aerosol-cloud interaction processes. We apply our technique to two case studies on 19 August and 5 September 2006 since in-situ aircraft measurements during the NAMMA campaign were available on these days to help validate the results of the technique. The significant conclusions from this paper are as follows:
1. In comparison to in situ observations in cloud-free regions, there was considerable improvement in the aerosol number concentration profiles upon the application of our satellite data constraint technique. For instance, observations and our technique both showed aerosol number concentrations from 20-30 cm-3 between 2 and 5 km for Saharan dust moving over the eastern Atlantic Ocean on 5 September 2006.
2. In cloudy regions, we found that our technique was able to derive realistic mass concentrations for profiles where the CALIOP lidar was strongly attenuated. This is especially important for our TC simulations involving optically thick clouds that strongly attenuate the CALIOP signal which cause poor-quality backscatter measurements that should not be used assimilated into a model.
3. Overall, our technique is able to provide the model with a complete three dimensional distribution of aerosols in clear and cloudy conditions which is critical for conducting realistic simulations of aerosols interacting with a TC environment. The impacts of the aerosol direct and indirect radiative effects on a TC environment are dependent upon the horizontal and vertical distribution of aerosols in the atmosphere.
Although the technique performs well over ocean, it should be applied with caution over other regions and seasons where dust is not the dominant aerosol type and the transport pathways of the aerosol may be very different. In the second part of this two-part series, we apply the technique developed to investigate the potential impact of dust aerosols on TC development through conducting WRF-Chem model simulations on TC Florence taking place during the NAMMA campaign.
References
Abdul-Razzak, H., and Ghan, S. J.: A Parameterization of Aerosol Activation. 3. Sectional
Representation, J. Geophys. Res., 107(D3), 4026, doi:10.1029/2001JD000483, 2002.
Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1042–1047 (2000).
Ackermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F.S. Binkowski, and U. Shankar,
1998, Modal aerosol dynamics model for Europe: Development and first applications, Atmospheric environment, 32, No.17, 2981-2999.
Alizadeh Choobari, O., P. Zawar-Reza, and A. Sturman (2012), Atmospheric forcing of the
three-dimensional distribution of dust particles over Australia: A case study, J. Geophys.
Res., 117, D11206, doi:10.1029/2012JD017748.
Barnard, J. C., Chapman, E. G., Fast, J. D., Schemlzer, J. R., Slusser, J. R., and Shetter, R. E.: An
Evaluation of the FAST-J Photolysis Algorithm for Predicting Nitrogen Dioxide Photolysis Rates under Clear and Cloudy Sky Conditions, Atmos. Environ.,38, 3393–3403, 2004a.
Binkowski, F. S., and Shankar, U.: The Regional Particulate Matter Model: 1. Model Description
and Preliminary Results, J. Geophys. Res., 100, 26191–26209, 1995.
Bréon, F.-M., et al. (2002), Aerosol effect on cloud droplet size monitored from satellite,
Science, 295, 834–838.
R. V. Cakmur, R. L. Miller, J. Perlwitz, I. V. Geogdzhayev, P. Ginoux, D. Koch, K. E. Kohfeld,
I. Tegen, and C. S. Zender, “Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations”, J. Geophys. Res., vol. 111, no. D06207, 2006. DOI:10.1029/2005JD005791.
Chand, D., T. L. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan
(2008), Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing, J. Geophys. Res., 113, D13206, doi:10.1029/2007JD009433.
Chapman, E. G., Gustafson Jr., W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S.,
and Fast, J. D. (2009), Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources, Atmos. Chem. Phys., 9, 945-964, doi:10.5194/acp-9-945-2009
Charlson, R. J. et al. Climate forcing of anthropogenic aerosols. Science 255, 423–430 (1992).
Chen, F., and J. Dudhia (2001), Coupling an advanced land surface-hydrology model with the
Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129(4), 569-585.
Chen, G., Ziemba, L. D., Chu, D. A., Thornhill, K. L., Schuster, G. L., Winstead, E. L., Diskin,
G. S., Ferrare, R. A., Burton, S. P., Ismail, S., Kooi, S. A., Omar, A. H., Slusher, D. L., Kleb, M. M., Reid, J. S., Twohy, C. H., Zhang, H., and Anderson, B. E.: Observations of Saharan dust microphysical and optical properties from the Eastern Atlantic during NAMMA airborne field campaign, Atmos. Chem. Phys., 11, 723-740, doi:10.5194/acp-11-723-2011, 2011.
Cheng, T., et al. (2012), The inter-comparison of MODIS, MISR, and GOCART aerosol
products against AERONET data over China, J. Quan. Spect. and Rad. Transfer, 113, 16, 2135-2145, http://dx.doi.org/10.1016/j.jqsrt.2012.06.016
Chin, M., R. B. Rood, S.-J. Lin, J.-F. Milllet, and A. Thompson, Atmospheric sulfur cycle
simulated in the global model GOCART: Model description and global properties, J. Geophys. Res., 105, 24,671-24,687, 2000.
Chin, M., P. Ginoux, S. Kinne, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A.
Higurashi, and T. Nakajima, Tropospheric aerosol optical thickness fromt he GOCART model and comparisons with satellite and sunphotometer measurements, J. Atmos. Sci. 59, 461-483, 2002.
Chou M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies.
NASA Tech. Rep. NASA/TM-199-10460, vol. 15, 38 pp9.
Chung, C., and G. Zhang (2004), Impact of absorbing aerosol on precipitation: Dynamic aspects
in association with convective available potential energy and convective parameterization closure and dependence on aerosol heating profile, J. Geophys. Res., 109, D22103, doi:10.1029/2004JD004726.
Dunion, J. P., and C. S. Velden (2004), The Impact of the Saharan Air Layer on Atlantic
Tropical Cyclone Activity, Bull. Amer. Meteor. Soc., 85, 353-365.
Easter, R. C., S. J. Ghan, Y. Zhang, R. D. Saylor, E. G. Chapman, N. S. Laulainen, H. Abdul
Razzak, L. R. Leung, X. Bian, and R. A. Zaveri (2004), MIRAGE: Model description and evaluation of aerosols and trace gases, J. Geophys. Res., 109, D20210, doi:10.1029/2004JD004571.
Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D.
Tarpley (2003), Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res., 108(D22), 8851, doi:10.1029/2002JD003296.
Fast, J. D., W. I. Gustafson Jr., R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman, G. A.
Grell, and S. E. Peckham (2006), Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res., 111, D21305, doi:10.1029/2005JD006721
Forster, P., et al. (2007), Changes in atmospheric constituents and in radiative forcing, in
Climate Change 2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by S. Solomon et al., chap. 2, pp. 131–234, Cambridge
Univ. Press, Cambridge, U. K.
Fu, Q., T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang (2009), Test of Mie-based single-
scattering properties of non-spherical dust aerosols in radiative flux calculations, J. Quant. Spectrosc. Radiat. Transfer, 110, 1640-1653, doi:10.1016/j.jqsrt.2009.03.010.
Ghan, S. J., Leung, L. R., Easter, R. C. and Abdul-Razzak, H.: Prediction of Droplet Number in a
General Circulation Model, J. Geophys. Res., 102, 21 777–21 794, 1997.
Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Nin˜o
and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 1169–1187.
Gopalakrishnan, S., Q. Liu, T. Marchok, D. Sheinin, N. Surgi, R. Tuleya, R. Yablonsky, and X.
Zhang (2010), Hurricane Weather Research and Forecasting (HWRF) model scientific documentation, technical report, Dev. Testbed Cent., Boulder, Colo.
Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder
(2005), Fully coupled "online" chemistry within the WRF model, Atmos. Environ., 39, 6957. 6975
Jenkins, G. S., A. S. Pratt, and A. Heymsfield (2008), Possible linkages between Saharan dust
and tropical cyclone rain band invigoration in the eastern Atlantic during NAMMA-06, Geophys. Res. Lett., 35, L08815, doi:10.1029/2008GL034072
Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Ferrare, R. A., Mack, T. L.,
Welch, W., Isquierdo, L. R., and Hovis, F. E. (2008), Airborne high spectral resolution lidar for profiling aerosol optical properties, Appl. Opt., 47, 6734–6752, doi:10.1364/AO.47.006734.
Hansen, J., Sato, M. & Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. 102,
6831–6864 (1997).
Haywood, J. M. and Boucher, O. (2000), Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543.
Haywood, J. M., R. P. Allan, I. Culverwell, A. Slingo, S. Milton, J. Edwards, and N. Clerbaux
(2005), Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003?, J. Geophys. Res., 110, D05105, doi:10.1029/2004JD005232.
Haywood, J. M., et al. (2011), Motivation, rationale and key results from the GERBILS Saharan
dust measurement campaign, Q. J. R. Meteorol. Soc., 137, 1106-1116, doi:10.1002/qj.797.
Hess, M., K¨opke, P., and Schult, I.: Optical properties of aerosols and clouds: The software
package OPAC, B. Am. Meteorol. Assoc., 79, 831–844, 1998.
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit
treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, 2006.
Hu, X.-M., J. M. Neilsen-Gammon, and F. Zhang (2010), Evaluation of three planetary boundary
layer schemes in the WRF model, J. Appl. Meteorol. Climatol., 49, 1831-1844, DOI: 10.1175/2010JAMC2432.1.
Huang, J., P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. K. Ayers (2008), Long-
range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX, J. Geophys. Res., 113, D23212, doi:10.1029/2008JD010620
Huang, J., et al. (2009), Taklimakan dust aerosol radiative heating derived from CALIPSO
observations using the Fu-Liou radiation model with CERES constraints, Atmos. Chem. Phys., 9, 4011-4021
Huang, J., C. Zhang, and J. M. Prospero (2010), African dust outbreaks: A satellite perspective
of temporal and spatial variability over the tropical Atlantic Ocean, J. Geophys. Res., 115, D05202, doi:10.1029/2009JD012516
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins
(2008), Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
Kalashnikova, O. V. and Sokolik, I. N.: Importance of shapes and compositions of wind-blown
dust particles for remote sensing at solar wavelengths, Geophys. Res. Lett., 29, 1398,
doi:139810.1029/2002gl014947, 2002.
Karyampudi, V. M., and T. N. Carlson (1988), Analysis and numerical simulations of the
Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45, 3102–3136.
Karyampudi, V. Mohan, and H. F. Pierce, 2002: Synoptic-Scale Influence of the Saharan Air
Layer on Tropical Cyclogenesis over the Eastern Atlantic. Mon. Wea. Rev., 130, 3100-3128. doi: http://dx.doi.org/10.1175/1520-0493(2002)130<3100:SSIOTS>2.0.CO;2
Khain, A., D. Rosenfeld, and A. Pokrovsky (2005), Aerosol impact on the dynamics and
microphysics of deep convective clouds, Q. J. R. Meteorol. Soc., 131, 2639-2663
Khain, A., B. Lynn, J. Dudhia, 2010: Aerosol Effects on Intensity of Landfalling Hurricanes as
Seen from Simulations with the WRF Model with Spectral Bin Microphysics. J. Atmos. Sci., 67, 365.384. doi: http://dx.doi.org/10.1175/2009JAS3210.1
Köpke, P., Hess, M., Schult, I., and Shettle, E. P.: Global Aerosol Data Set. MPI Meteorologie
Hamburg Report No. 243, 44 pp., 1997.
Koren, I., Y. J. Kaufman, L. A. Remer, and J. V. Martins (2004), Measurement of the effect of
Amazon smoke on inhibition of cloud formation, Science, 303(5662), 1342–1345.
Krall, G., and W. R. Cotton (2012), Potential indirect effects of aerosol on tropical cyclone
intensity: Convective fluxes and cold-pool. Atmos. Chem. Phys. Discuss., 12, 351-385.
Lau, K. M., and K. M. Kim (2007), Cooling of the Atlantic by Saharan dust, Geophys. Res. Lett.,
34, L23811, doi:10.1029/2007GL031538.
Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk Parameterization of the Snow Field in a Cloud
Model, J. Climate Appl. Meteor., 22, 1065–1092, 1983.
Liu, Y., Daum, P. H., and McGraw, R. L.: Size Truncation Effect, Threshold Behavior, and a
New Type of Autoconversion Parameterization, Geophys. Res. Lett., 32, L11811,
doi:10.1029/2005GL022636, 2005.
Liu, Z., D. Winker, A. Omar, M. Vaughan, C. Trepte, Y. Hu, K. Powell, W. Sun, and B. Lin
(2011), Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements, J. Quant. Spectrosc. Radiat. Transfer, 112, 204–213, doi:10.1016/j.jqsrt.2010.05.006.
Lohmann, U. (2009), Marine boundary layer clouds, in Surface Ocean—Lower Atmosphere
Processes, Geophys. Monogr. Ser., vol. 187, edited by C. Le Quéré and E. S. Saltzman, pp. 57–68, AGU, Washington, D. C., doi:10.1029/2008GM000761.
Luo, G. and Yu, F.: Simulation of particle formation and number concentration over the Eastern
United States with the WRF-Chem + APM model, Atmos. Chem. Phys., 11, 11521–11533, doi:10.5194/acp-11-11521-2011, 2011b
McConnell, C. L., E. J. Highwood, H. Coe, P. Formenti, B. Anderson, S. Osborne, S. Nava, K.
Desboeufs, G. Chen, and M. A. J. Harrison (2008), Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment, J. Geophys. Res., 113, D14S05, doi:10.1029/2007JD009606
McConnell, C. L., P. Formenti, E. J. Highwood, and M. A. J. Harrison (2010), Using aircraft
measurements to determine the refractive index of Saharan dust during the DODO Experiments, Atmos. Chem. Phys., 10, 3081–3098, doi:10.5194/acp-10-3081-2010.
McKeen, S., et al. (2005), Assessment of an ensemble of seven real-time ozone forecasts over
eastern North America during the summer of 2004, J. Geophys. Res., 110, D21307, doi:10.1029/2005JD005858
McKeen, S., et al. (2007), Evaluation of several PM2.5 forecast models using data collected
during the ICARTT/NEAQS 2004 field study, J. Geophys. Res., 112, D10S20, doi:10.1029/2006JD007608
Min, Q.-L., Li, R., Lin, B., Joseph, E., Wang, S., Hu, Y., Morris, V., and Chang, F.: Evidence of
mineral dust altering cloud microphysics and precipitation, Atmos. Chem. Phys., 9, 3223-3231, doi:10.5194/acp-9-3223-2009, 2009
Mie, G. (1908), Beigrade zur optik trüber medien, speziell kolloidaler metallösungen, Ann.
Physik, 25(4), 337-445.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative
transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102(D14), 16663–16682, doi: 10.1029/97JD00237.
Morrison, H. and Pinto, J. O.: Mesoscale modeling of springtime Arctic mixed-phase stratiform
clouds using a new two-moment bulk microphysics scheme, J. Atmos. Sci., 62, 3683–3704, 2005.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics on the
development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes, Mon. Weather Rev., 137, 991–1007,doi:10.1175/2008mwr2556.1, 2009.
Nowottnick, E., P. Colarco, R. Ferrare, G. Chen, S. Ismail, B. Anderson, and E. Browell (2010),
Online simulations of mineral dust aerosol distributions: Comparisons to NAMMA observations and sensitivity to dust emission parameterization, J. Geophys. Res., 115, D03202, doi:10.1029/2009JD012692.
Obukhov, A. M. (1971), Turbulence in an atmosphere with a non-uniform temperature,
Boundary Layer Meteorol., 2(1), 7-29.
Omar, A., et al. (2010), Extinction-to-backscatter ratios of Saharan dust layers derived from in
situ measurements and CALIPSO overflights during NAMMA, J. Geophys. Res., 115, D24217, doi:10.1029/2010JD014223
Petzold, A., K. Rasp, B. Weinzierl, M. Esselborn, T. Hamburger, A. D¨ornbrack, K. Kandler, L.
Sch¨utz, P. Knippertz, M. Fiebig, and A. Virkkula (2009), Saharan dust refractive index and optical properties from aircraft-based observations during SAMUM 2006, Tellus Ser. B, 61, 118–130.
Powell, K. A., et al. (2009), CALIPSO Lidar Calibration Algorithms. Part I: Nighttime
532-nm Parallel Channel and 532-nm Perpendicular Channel, J. Atmos. Oceanic Technol., 26, 2015–2033, doi: http://dx.doi.org/10.1175/2009JTECHA1242.1
Remer, L. A., et al. (2005), The MODIS aerosol algorithm, products, and validation, J. Atmos.
Sci., 62, 947–973, doi:10.1175/JAS3385.1.
Rogers, R. R., C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B.
Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker (2011), Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 11, 1295–1311, doi:10.5194/acp-11-1295-2011.
Rosenfeld, D., et al. (2001), Desert dust suppressing precipitation: A possible desertification
feedback loop, Proc. Natl. Acad. Sci. U. S. A., 98(11), 5975– 5980.
Rosenfeld, D., et al. (2011), Pollution and dust aerosols modulating tropical cyclones intensities, Atmos. Res., doi:10.1016/j.atmosres.2011.06.006.
Rutledge, S. A. and Hobbs, P. V.: The Mesoscale and Microscale Structure and Organization of
Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands, J. Atmos. Sci., 20, 2949-2972, 1984.
Saide, P. E., Spak, S. N., Carmichael, G. R., Mena-Carrasco, M. A., Howell, S., Leon, D. C.,
Snider, J. R., Bandy, A. R., Collett, J. L., Benedict, K. B., de Szoeke, S. P., Hawkins, L. N., Allen, G., Crawford, I., Crosier, J., and Springston, S. R.: Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx, Atmos. Chem. Phys. Discuss., 11, 29723-29775, doi:10.5194/acpd-11-29723-2011, 2011.
Sandu, A., J. G. Verwer, J. G. Blom, E. J. Spee, G. R. Carmichael, and F. A. Potra (1997),
Benchmarking stiff ODE solvers for atmospheric chemistry problems. Part II: Rosenbrock solvers, Atmos. Environ., 31, 3459–3472.
Sassen, K., P. J. DeMott, J. M. Prospero, and M. R. Poellot (2003), Saharan dust storms and
indirect aerosol effects on clouds: CRYSTAL-FACE results, Geophys. Res. Lett., 30(12), 1633, doi:10.1029/2003GL017371.
Schladitz, A., Muller, T., Kaaden, N., Massling, A., Kandler, K., Ebert, M., Weinbruch, S.,
Deutscher, C., and Wiedensohler, A.: In-situ measurements of optical properties at tinfou (morocco) during the saharan mineral dust experiment samum 2006, Tellus B, 61, 64–78, doi:10.1111/j.1600-0889.2008.00397.x, 2009.
Schubert S. D., R. B. Rood, and J. Pfaendtner, An assimilated dataset for earth science
applications, Bull Am Meteorol Soc, 74, 2331-23242, 1993..
Shrivastava, M., Fast, J., Easter, R., Gustafson Jr., W. I., Zaveri, R. A., Jimenez, J. L., Saide, P.,
and Hodzic, A.: Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach, Atmos. Chem. Phys., 11, 6639–6662, doi:10.5194/acp-11-6639-2011, 2011.
Skamarock, W. C.: Positive-Definite and Monotonic Limiters for Unrestricted-Time-Step
Transport Schemes, Mon.Weather Rev., 134, 2241–2250, 2006.
Smolarkiewicz, Piotr K., 1989: Comment on “A Positive Definite Advection Scheme Obtained
by Nonlinear Renormalization of the Advective Fluxes”. Mon. Wea. Rev., 117, 2626–2632. doi: http://dx.doi.org/10.1175/1520-0493(1989)117<2626:COPDAS>2.0.CO;2.
Tesche, M., et al. (2007), Particle backscatter, extinction, and lidar ratio profiling with
Raman lidar in south and north China, Applied optics, 46, 25, 6302-6308.
Thorsen, T. J., Q. Fu, and J. Comstock (2011), Comparison of the CALIPSO satellite and
ground-based observations of cirrus clouds at the ARM TWP sites, J. Geophys. Res., 116, D21203, doi:10.1029/2011JD015970.
Varnai, T., and A. Marshak (2011), Global CALIPSO Observations of Aerosol Changes Near
Clouds, IEEE, 8, 1, doi:10.1109/LGRS.2010.2049982.
Wang, C., D. Kim, A. M. L. Ekman, M. C. Barth, and P. J. Rasch (2009), Impact of
anthropogenic aerosols on Indian summer monsoon, Geophys. Res. Lett., 36, L21704, doi:10.1029/2009GL040114.
Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of
explicitly modeled convective systems. Mon. Wea. Rev., 125, 527–548.
Wexler, A. S., Lurmann, F.W., and Seinfeld, J. H.: Modelling urban and regional aerosols – I.
Model development, Atmos. Environ., 28, 531–546, 1994.
Wilcox, E. M. (2010), Stratocumulus cloud thickening beneath layers of absorbing smoke
aerosol, Atmos. Chem. Phys., 10, 11769–11777, doi:10.5194/acp-10-11769-2010.
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate Simulation of In- and Below-Cloud
Photolysis in Tropospheric Chemical Models, J. Atmos. Chem., 37, 245–282, 2000.
Winker, D. M., J. R. Pelon, and M. P. McCormick (2003), The CALIPSO mission: Spaceborne
lidar for observation of aerosols and clouds, Proc. SPIE Int. Soc. Opt. Eng., 4893, 1-11
Winker, David M., Mark A. Vaughan, Ali Omar, Yongxiang Hu, Kathleen A. Powell, Zhaoyan
Liu, William H. Hunt, Stuart A. Young, 2009: Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Oceanic Technol., 26, 2310–2323.
doi: http://dx.doi.org/10.1175/2009JTECHA1281.1.
Wu, L., H. Su, and J. H. Jiang (2011), Regional simulations of deep convection and biomass
burning over South America: 1. Model evaluations using multiple satellite data sets, J. Geophys. Res., 116, D17208, doi:10.1029/2011JD01610.
Xu, K.-M., and D. A. Randall, 1995: Impact of interactive radiative transfer on the microscopic
behavior of cumulus ensembles. Part I: Radiation parameterization and sensitivity test. J. Atmos. Sci., 52,785–799.
Yang, P., Q. Feng, G. Hong, G.W. Kattawar, W.J. Wiscombe, M.I. Mishchenko, O. Dubovik, I.
Laszlo, and I.N. Sokolik, 2007: Modeling of the scattering and radiative properties of nonspherical dust-like aerosols. J. Aerosol Sci., 38, 995-1014, doi:10.1016/j.jaerosci.2007.07.001.
Yang, E.-S., P. Gupta, and S. A. Christopher (2009), Net radiative effect of dust aerosols from
satellite measurements over Sahara, Geophys. Res. Lett., 36, L18812, doi:10.1029/2009GL039801.
Yin, Y., Q. Chen, L. Jin, B. Chen, S. Zhu, and X. Zhang (2012), The effects of deep convection
on the concentration and size distribution of aerosol particles within the upper troposphere: A case study, J. Geophys. Res., 117, D22202, doi:10.1029/2012JD017827.
Yu, H., M. Chin, D. M. Winker, A. H. Omar, Z. Liu, C. Kittaka, and T. Diehl (2010), Global
view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations, J. Geophys. Res., 115, D00H30, doi:10.1029/2009JD013364.
Zaveri, R. A. and Peters, L. K.: A New Lumped Structure Photochemical Mechanism for Large-
Scale Applications, J. Geophys. Res., 104, 30387–30415, 1999.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol
Interactions and Chemistry (MOSAIC), J. Geophys. Res., 113, D13204, doi:10.1029/2007JD008782, 2008.
Zhang, H., G. M. McFarquhar, S. M. Saleeby, and W. R. Cotton, (2007), Impacts of Saharan
dust as CCN on the evolution of an idealized tropical cyclone, Geophys. Res. Lett., 34, L14812, doi:10.1029/2007GL030225.
Zhang, H., G. M. McFarquhar, W. R. Cotton, and Y. Deng (2009), Direct and indirect impacts of
Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development, Geophys. Res. Lett., 36, L06802, doi:10.1029/2009GL037276
Zhang, J. L., and S. A. Christopher (2003), Longwave radiative forcing of Saharan dust aerosols
estimated from MODIS, MISR, CERES observtions on Terra, Geophys. Res. Lett., 30, 23, doi:10.1029/2003GL018479.
Share with your friends: |