movements of the stamens and pistil at various times, especially at the
period of, and just after, fertilisation, have been proved to be
strictly adaptive in so many cases that botanists now believe that all
the external characters of flowers either are or have been of use to the
species.
It has also been shown, by Kerner and other botanists, that another set
of characteristics have relation to the prevention of ants, slugs, and
other animals from reaching the flowers, because these creatures would
devour or injure them without effecting fertilisation. The spines,
hairs, or sticky glands on the stem or flower-stalk, the curious hairs
or processes shutting up the flower, or sometimes even the extreme
smoothness and polish of the outside of the petals so that few insects
can hang to the part, have been shown to be related to the possible
intrusion of these "unbidden guests."[42] And, still more recently,
attempts have been made by Grant Allen and Sir John Lubbock to account
for the innumerable forms, textures, and groupings of leaves, by their
relation to the needs of the plants themselves; and there can be little
doubt that these attempts will be ultimately successful. Again, just as
flowers have been adapted to secure fertilisation or
cross-fertilisation, fruits have been developed to assist in the
dispersal of seeds; and their forms, sizes, juices, and colours can be
shown to be specially adapted to secure such dispersal by the agency of
birds and mammals; while the same end is secured in other cases by
downy seeds to be wafted through the air, or by hooked or sticky
seed-vessels to be carried away, attached to skin, wool, or feathers.
Here, then, we have an enormous extension of the region of utility in
the vegetable kingdom, and one, moreover, which includes almost all the
specific characters of plants. For the species of plants are usually
characterised either by differences in the form, size, and colour of the
flowers, or of the fruits; or, by peculiarities in the shape, size,
dentation, or arrangement of the leaves; or by peculiarities in the
spines, hairs, or down with which various parts of the plant are
clothed. In the case of plants it must certainly be admitted that
"specific" characters are pre-eminently adaptive; and though there may
be some which are not so, yet all those referred to by Darwin as having
been adduced by various botanists as useless, either pertain to genera
or higher groups, or are found in some plants of a species only--that
is, are individual variations not specific characters.
In the case of animals, the most recent wide extension of the sphere of
utility has been in the matter of their colours and markings. It was of
course always known that certain creatures gained protection by their
resemblance to their normal surroundings, as in the case of white arctic
animals, the yellow or brown tints of those living in deserts, and the
green hues of many birds and insects surrounded by tropical vegetation.
But of late years these cases have been greatly increased both in number
and variety, especially in regard to those which closely imitate special
objects among which they live; and there are other kinds of coloration
which long appeared to have no use. Large numbers of animals, more
especially insects, are gaudily coloured, either with vivid hues or with
striking patterns, so as to be very easily seen. Now it has been found,
that in almost all these cases the creatures possess some special
quality which prevents their being attacked by the enemies of their kind
whenever the peculiarity is known; and the brilliant or conspicuous
colours or markings serve as a warning or signal flag against attack.
Large numbers of insects thus coloured are nauseous and inedible;
others, like wasps and bees, have stings; others are too hard to be
eaten by small birds; while snakes with poisonous fangs often have some
characteristic either of rattle, hood, or unusual colour, which
indicates that they had better be left alone.
But there is yet another form of coloration, which consists in special
markings--bands, spots, or patches of white, or of bright colour, which
vary in every species, and are often concealed when the creature is at
rest but displayed when in motion,--as in the case of the bands and
spots so frequent on the wings and tails of birds. Now these specific
markings are believed, with good reason, to serve the purpose of
enabling each species to be quickly recognised, even at a distance, by
its fellows, especially the parents by their young and the two sexes by
each other; and this recognition must often be an important factor in
securing the safety of individuals, and therefore the wellbeing and
continuance of the species. These interesting peculiarities will be more
fully described in a future chapter, but they are briefly referred to
here in order to show that the most common of all the characters by
which species are distinguished from each other--their colours and
markings--can be shown to be adaptive or utilitarian in their nature.
But besides colour there are almost always some structural characters
which distinguish species from species, and, as regards many of these
also, an adaptive character can be often discerned. In birds, for
instance, we have differences in the size or shape of the bill or the
feet, in the length of the wing or the tail, and in the proportions of
the several feathers of which these organs are composed. All these
differences in the organs on which the very existence of birds depends,
which determine the character of flight, facility for running or
climbing, for inhabiting chiefly the ground or trees, and the kind of
food that can be most easily obtained for themselves and their
offspring, must surely be in the highest degree utilitarian; although in
each individual case we, in our ignorance of the minutiae of their
life-history, may be quite unable to see the use. In mammalia specific
differences other than colour usually consist in the length or shape of
the ears and tail, in the proportions of the limbs, or in the length and
quality of the hair on different parts of the body. As regards the ears
and tail, one of the objections by Professor Bronn relates to this very
point. He states that the length of these organs differ in the various
species of hares and of mice, and he considers that this difference can
be of no service whatever to their possessors. But to this objection
Darwin replies, that it has been shown by Dr. Schöbl that the ears of
mice "are supplied in an extraordinary manner with nerves, so that they
no doubt serve as tactile organs." Hence, when we consider the life of
mice, either nocturnal or seeking their food in dark and confined
places, the length of the ears may be in each case adapted to the
particular habits and surroundings of the species. Again, the tail, in
the larger mammals, often serves the purpose of driving off flies and
other insects from the body; and when we consider in how many parts of
the world flies are injurious or even fatal to large mammals, we see
that the peculiar characteristics of this organ may in each case have
been adapted to its requirements in the particular area where the
species was developed. The tail is also believed to have some use as a
balancing organ, which assists an animal to turn easily and rapidly,
much as our arms are used when running; while in whole groups it is a
prehensile organ, and has become modified in accordance with the habits
and needs of each species. In the case of mice it is thus used by the
young. Darwin informs us that the late Professor Henslow kept some
harvest-mice in confinement, and observed that they frequently curled
their tails round the branches of a bush placed in the cage, and thus
aided themselves in climbing; while Dr. Günther has actually seen a
mouse suspend itself by the tail (_Origin_, p. 189).
Again, Mr. Lawson Tait has called attention to the use of the tail in
the cat, squirrel, yak, and many other animals as a means of preserving
the heat of the body during the nocturnal and the winter sleep. He says,
that in cold weather animals with long or bushy tails will be found
lying curled up, with their tails carefully laid over their feet like a
rug, and with their noses buried in the fur of the tail, which is thus
used exactly in the same way and for the same purpose as we use
respirators.[43]
Another illustration is furnished by the horns of deer which, especially
when very large, have been supposed to be a danger to the animal in
passing rapidly through dense thickets. But Sir James Hector states,
that the wapiti, in North America, throws back its head, thus placing
the horns along the sides of the back, and is then enabled to rush
through the thickest forest with great rapidity. The brow-antlers
protect the face and eyes, while the widely spreading horns prevent
injury to the neck or flanks. Thus an organ which was certainly
developed as a sexual weapon, has been so guided and modified during its
increase in size as to be of use in other ways. A similar use of the
antlers of deer has been observed in India.[44]
The various classes of facts now referred to serve to show us that, in
the case of the two higher groups--mammalia and birds--almost all the
characters by which species are distinguished from each other are, or
may be, adaptive. It is these two classes of animals which have been
most studied and whose life-histories are supposed to be most fully
known, yet even here the assertion of inutility, by an eminent
naturalist, in the case of two important organs, has been sufficiently
met by minute details either in the anatomy or in the habits of the
groups referred to. Such a fact as this, together with the extensive
series of characters already enumerated which have been of late years
transferred from the "useless" to the "useful" class, should convince
us, that the assertion of "inutility" in the case of any organ or
peculiarity which is not a rudiment or a correlation, is not, and can
never be, the statement of a fact, but merely an expression of our
ignorance of its purpose or origin.[45]
_Instability of Non-adaptive Characters._
One very weighty objection to the theory that _specific_ characters can
ever be wholly useless (or wholly unconnected with useful organs by
correlation of growth) appears to have been overlooked by those who have
maintained the frequency of such characters, and that is, their almost
necessary instability. Darwin has remarked on the extreme variability of
secondary sexual characters--such as the horns, crests, plumes, etc.,
which are found in males only,--the reason being, that, although of some
use, they are not of such direct and vital importance as those adaptive
characters on which the wellbeing and very existence of the animals
depend. But in the case of wholly useless structures, which are not
rudiments of once useful organs, we cannot see what there is to ensure
any amount of constancy or stability. One of the cases on which Mr.
Romanes lays great stress in his paper on "Physiological Selection"
(_Journ. Linn. Soc._, vol. xix. p. 384) is that of the fleshy appendages
on the corners of the jaw of Normandy pigs and of some other breeds. But
it is expressly stated that they are not constant; they appear
"frequently," or "occasionally," they are "not strictly inherited, for
they occur or fail in animals of the same litter;" and they are not
always symmetrical, sometimes appearing on one side of the face alone.
Now whatever may be the cause or explanation of these anomalous
appendages they cannot be classed with "specific characters," the most
essential features of which are, that they _are_ symmetrical, that they
_are_ inherited, and that they _are_ constant. Admitting that this
peculiar appendage is (as Mr. Romanes says rather confidently, "we
happen to know it to be") wholly useless and meaningless, the fact would
be rather an argument against specific characters being also
meaningless, because the latter never have the characteristics which
this particular variation possesses.
These useless or non-adaptive characters are, apparently, of the same
nature as the "sports" that arise in our domestic productions, but
which, as Mr. Darwin says, without the aid of selection would soon
disappear; while some of them may be correlations with other characters
which are or have been useful. Some of these correlations are very
curious. Mr. Tegetmeier informed Mr. Darwin that the young of white,
yellow, or dun-coloured pigeons are born almost naked, whereas other
coloured pigeons are born well clothed with down. Now, if this
difference occurred between wild species of different colours, it might
be said that the nakedness of the young could not be of any use. But the
colour with which it is correlated might, as has been shown, be useful
in many ways. The skin and its various appendages, as horns, hoofs,
hair, feathers, and teeth, are homologous parts, and are subject to very
strange correlations of growth. In Paraguay, horses with curled hair
occur, and these always have hoofs exactly like those of a mule, while
the hair of the mane and tail is much shorter than usual. Now, if any
one of these characters were useful, the others correlated with it might
be themselves useless, but would still be tolerably constant because
dependent on a useful organ. So the tusks and the bristles of the boar
are correlated and vary in development together, and the former only may
be useful, or both may be useful in unequal degrees.
The difficulty as to how individual differences or sports can become
fixed and perpetuated, if altogether useless, is evaded by those who
hold that such characters are exceedingly common. Mr. Romanes says that,
upon his theory of physiological selection, "it is quite intelligible
that when a varietal form is differentiated from its parent form by the
bar of sterility, any little meaningless peculiarities of structure or
of instinct _should at first be allowed to arise_, and that they should
then _be allowed to perpetuate themselves_ by heredity," until they are
finally eliminated by disuse. But this is entirely begging the
question. Do meaningless peculiarities, which we admit often arise as
spontaneous variations, ever perpetuate themselves in all the
individuals constituting a variety or race, without selection either
human or natural? Such characters present themselves as unstable
variations, and as such they remain, unless preserved and accumulated by
selection; and they can therefore never become "specific" characters
unless they are strictly correlated with some useful and important
peculiarities.
As bearing upon this question we may refer to what is termed Delboeuf's
law, which has been thus briefly stated by Mr. Murphy in his work on
_Habit and Intelligence_, p. 241.
"If, in any species, a number of individuals, bearing a ratio
not infinitely small to the entire number of births, are in
every generation born with a particular variation which is
neither beneficial nor injurious, and if it is not counteracted
by reversion, then the proportion of the new variety to the
original form will increase till it approaches indefinitely near
to equality."
It is not impossible that some definite varieties, such as the melanic
form of the jaguar and the bridled variety of the guillemot are due to
this cause; but from their very nature such varieties are unstable, and
are continually reproduced in varying proportions from the parent forms.
They can, therefore, never constitute species unless the variation in
question becomes beneficial, when it will be fixed by natural selection.
Darwin, it is true, says--"There can be little doubt that the tendency
to vary in the same manner has often been so strong that all the
individuals of the same species have been similarly modified without the
aid of any form of selection."[46] But no proof whatever is offered of
this statement, and it is so entirely opposed to all we know of the
facts of variation as given by Darwin himself, that the important word
"all" is probably an oversight.
On the whole, then, I submit, not only has it not been proved that an
"enormous number of specific peculiarities" are useless, and that, as a
logical result, natural selection is "not a theory of the origin of
species," but only of the origin of adaptations which are usually
common to many species, or, more commonly, to genera and families; but,
I urge further, it has not even been proved that any truly "specific"
characters--those which either singly or in combination distinguish each
species from its nearest allies--are entirely unadaptive, useless, and
meaningless; while a great body of facts on the one hand, and some
weighty arguments on the other, alike prove that specific characters
have been, and could only have been, developed and fixed by natural
selection because of their utility. We may admit, that among the great
number of variations and sports which continually arise many are
altogether useless without being hurtful; but no cause or influence has
been adduced adequate to render such characters fixed and constant
throughout the vast number of individuals which constitute any of the
more dominant species.[47]
_The Swamping Effects of Intercrossing._
This supposed insuperable difficulty was first advanced in an article in
the _North British Review_ in 1867, and much attention has been
attracted to it by the acknowledgment of Mr. Darwin that it proved to
him that "single variations," or what are usually termed "sports," could
very rarely, if ever, be perpetuated in a state of nature, as he had at
first thought might occasionally be the case. But he had always
considered that the chief part, and latterly the whole, of the materials
with which natural selection works, was afforded by individual
variations, or that amount of ever fluctuating variability which exists
in all organisms and in all their parts. Other writers have urged the
same objection, even as against individual variability, apparently in
total ignorance of its amount and range; and quite recently Professor
G.J. Romanes has adduced it as one of the difficulties which can alone
be overcome by his theory of physiological selection. He urges, that the
same variation does not occur simultaneously in a number of individuals
inhabiting the same area, and that it is mere assumption to say it does;
while he admits that "if the assumption were granted there would be an
end of the present difficulty; for if a sufficient number of individuals
were thus simultaneously and similarly modified, there need be no longer
any danger of the variety becoming swamped by intercrossing." I must
again refer my readers to my third chapter for the proof that such
simultaneous variability is not an assumption but a fact; but, even
admitting this to be proved, the problem is not altogether solved, and
there is so much misconception regarding variation, and the actual
process of the origin of new species is so obscure, that some further
discussion and elucidation of the subject are desirable.
In one of the preliminary chapters of Mr. Seebohm's recent work on the
_Charadriidae_, he discusses the differentiation of species; and he
expresses a rather widespread view among naturalists when, speaking of
the swamping effects of intercrossing, he adds: "This is unquestionably
a very grave difficulty, to my mind an absolutely fatal one, to the
theory of accidental variation." And in another passage he says: "The
simultaneous appearance, and its repetition in successive generations,
of a beneficial variation, in a large number of individuals in the same
locality, cannot possibly be ascribed to chance." These remarks appear
to me to exhibit an entire misconception of the facts of variation as
they actually occur, and as they have been utilised by natural selection
in the modification of species. I have already shown that every part of
the organism, in common species, does vary to a very considerable
amount, in a large number of individuals, and in the same locality; the
only point that remains to be discussed is, whether any or most of these
variations are "beneficial." But every one of these variations consists
either in increase or diminution of size or power of the organ or
faculty that varies; they can all be divided into a more effective and a
less effective group--that is, into one that is more beneficial or less
beneficial. If less size of body would be beneficial, then, as half the
variations in size are above and half below the mean or existing
standard of the species, there would be ample beneficial variations; if
a darker colour or a longer beak or wing were required, there are always
a considerable number of individuals darker and lighter in colour than
the average, with longer or with shorter beaks and wings, and thus the
beneficial variation must always be present. And so with every other
part, organ, function, or habit; because, as variation, so far as we
know, is and always must be in the two directions of excess and defect
in relation to the mean amount, whichever kind of variation is wanted is
always present in some degree, and thus the difficulty as to
"beneficial" variations occurring, as if they were a special and rare
class, falls to the ground. No doubt some organs may vary in three or
perhaps more directions, as in the length, breadth, thickness, or
curvature of the bill. But these may be taken as separate variations,
each of which again occurs as "more" or "less"; and thus the "right" or
"beneficial" or "useful" variation must always be present so long as any
variation at all occurs; and it has not yet been proved that in any
large or dominant species, or in any part, organ, or faculty of such
species, there is no variation. And even were such a case found it would
prove nothing, so long as in numerous other species variation was shown
to exist; because we know that great numbers of species and groups
throughout all geological time have died out, leaving no descendants;
Share with your friends: |