these birds are, as a rule, of dull colours, not superior on the average
to our grain-eating finches. Then, again, we have the grand pheasant
family, including the gold and the silver pheasants, the gorgeous
fire-backed and ocellated pheasants, and the resplendent peacock, all
feeding on the ground on grain or seeds or insects, yet adorned with the
most gorgeous colours.
There is, therefore, no adequate basis of facts for this theory to rest
upon, even if there were the slightest reason to believe that not only
birds, but butterflies and beetles, take any delight in colour for its
own sake, apart from the food-supply of which it indicates the presence.
All that has been proved or that appears to be probable is, that they
are able to perceive differences of colour, and to associate each colour
with the particular flowers or fruits which best satisfy their wants.
Colour being in its nature diverse, it has been beneficial for them to
be able to distinguish all its chief varieties, as manifested more
particularly in the vegetable kingdom, and among the different species
of their own group; and the fact that certain species of insects show
some preference for a particular colour may be explained by their having
found flowers of that colour to yield them a more abundant supply of
nectar or of pollen. In those cases in which butterflies frequent
flowers of their own colour, the habit may well have been acquired from
the protection it affords them.
It appears to me that, in imputing to insects and birds the same love of
colour for its own sake and the same aesthetic tastes as we ourselves
possess, we may be as far from the truth as were those writers who held
that the bee was a good mathematician, and that the honeycomb was
constructed throughout to satisfy its refined mathematical instincts;
whereas it is now generally admitted to be the result of the simple
principle of economy of material applied to a primitive cylindrical
cell.[162]
In studying the phenomena of colour in the organic world we have been
led to realise the wonderful complexity of the adaptations which bring
each species into harmonious relation with all those which surround it,
and which thus link together the whole of nature in a network of
relations of marvellous intricacy. Yet all this is but, as it were, the
outward show and garment of nature, behind which lies the inner
structure--the framework, the vessels, the cells, the circulating
fluids, and the digestive and reproductive processes,--and behind these
again those mysterious chemical, electrical, and vital forces which
constitute what we term Life. These forces appear to be fundamentally
the same for all organisms, as is the material of which all are
constructed; and we thus find behind the outer diversities an inner
relationship which binds together the myriad forms of life.
Each species of animal or plant thus forms part of one harmonious whole,
carrying in all the details of its complex structure the record of the
long story of organic development; and it was with a truly inspired
insight that our great philosophical poet apostrophised the humble
weed--
Flower in the crannied wall,
I pluck you out of the crannies,
I hold you here, root and all, in my hand,
Little flower--but _if_ I could understand
What you are, root and all, and all in all,
I should know what God and man is.
FOOTNOTES:
[Footnote 136: Burchell's _Travels_, vol. i. p. 10.]
[Footnote 137: _Nature_, vol. iii. p. 507.]
[Footnote 138: _Flowers, Fruits, and Leaves_, p. 128 (Fig. 79).]
[Footnote 139: For a popular sketch of these, see Sir J. Lubbock's
_Flowers, Fruits, and Leaves_, or any general botanical work.]
[Footnote 140: _Nature_, vol. xv. p, 117.]
[Footnote 141: Grant Allen's _Colour Sense_, p. 113.]
[Footnote 142: Canon Tristram's _Natural History of the Bible_, pp. 483,
484.]
[Footnote 143: For a complete historical account of this subject with
full references to all the works upon it, see the Introduction to
Hermann Müller's _Fertilisation of Flowers_, translated by D'Arcy W.
Thompson.]
[Footnote 144: For the full detail of his experiments, see _Cross-and
Self-Fertilisation of Plants_, 1876.]
[Footnote 145: See Darwin's _Fertilisation of Orchids_ for the many
extraordinary and complex arrangements in these plants.]
[Footnote 146: The English reader may consult Sir John Lubbock's
_British Wild Flowers in Relation to Insects_, and H. Müller's great and
original work, _The Fertilisation of Flowers_.]
[Footnote 147: Müller's _Fertilisation of Flowers_, p. 248.]
[Footnote 148: "Alpenblumen," by D.H. Müller. See _Nature_, vol. xxiii.
p. 333.]
[Footnote 149: This peculiarity of local distribution of colour in
flowers may be compared, as regards its purpose, with the recognition
colours of animals. Just as these latter colours enable the sexes to
recognise each other, and thus avoid sterile unions of distinct species,
so the distinctive form and colour of each species of flower, as
compared with those that usually grow around it, enables the fertilising
insects to avoid carrying the pollen of one flower to the stigma of a
distinct species.]
[Footnote 150: See H. Müller's _Fertilisation of Flowers_, p. 18.]
[Footnote 151: The above examples are taken from Rev. G. Henslow's paper
on "Self-Fertilisation of Plants," in _Trans. Linn. Soc._ Second series,
_Botany_, vol. i. pp. 317-398, with plate. Mr. H.O. Forbes has shown
that the same thing occurs among tropical orchids, in his paper "On the
Contrivances for insuring Self-Fertilisation in some Tropical Orchids,"
_Journ. Linn. Soc._, xxi. p. 538.]
[Footnote 152: These are the numbers given by Darwin, but I am informed
by Mr. Hemsley that many additions have been since made to the list, and
that cleistogamic flowers probably occur in nearly all the natural
orders.]
[Footnote 153: For a full account of cleistogamic flowers, see Darwin's
_Forms of Flowers_, chap. viii.]
[Footnote 154: Henslow's "Self-Fertilisation," _Trans. Linn. Soc._
Second series, _Botany_, vol. i. p. 391.]
[Footnote 155: The Rev. George Henslow, in his _Origin of Floral
Structures_, says: "There is little doubt but that all wind-fertilised
angiosperms are degradations from insect-fertilised flowers....
_Poterium sanguisorba_ is anemophilous; and _Sanguisorba officinalis_
presumably was so formerly, but has reacquired an entomophilous habit;
the whole tribe Poterieae being, in fact, a degraded group which has
descended from Potentilleae. Plantains retain their corolla but in a
degraded form. Junceae are degraded Lilies; while Cyperaceae and
Gramineae among monocotyledons may be ranked with Amentiferae among
dicotyledons, as representing orders which have retrograded very far
from the entomophilous forms from which they were possibly and probably
descended" (p. 266).
"The genus Plantago, like _Thalictrum minus_, Poterium, and others, well
illustrate the change from an entomophilous to the anemophilous state.
_P. lanceolata_ has polymorphic flowers, and is visited by
pollen-seeking insects, so that it can be fertilised either by insects
or the wind. _P. media_ illustrates transitions in point of structure,
as the filaments are pink, the anthers motionless, and the pollen grains
aggregated, and it is regularly visited by _Bombus terrestris_. On the
other hand, the slender filaments, versatile anthers, powdery pollen,
and elongated protogynous style are features of other species indicating
anemophily; while the presence of a degraded corolla shows its ancestors
to have been entomophilous. _P. media_, therefore, illustrates, not a
primitive entomophilous condition, but a return to it; just as is the
case with _Sanguisorba officinalis_ and _Salix Caprea_; but these show
no capacity of restoring the corolla, the attractive features having to
be borne by the calyx, which is purplish in Sanguisorba, by the pink
filaments of Plantago, and by the yellow anthers in the Sallow willow"
(p. 271).
"The interpretation, then, I would offer of inconspicuousness and all
kinds of degradations is the exact opposite to that of conspicuousness
and great differentiations; namely, that species with minute flowers,
rarely or never visited by insects, and habitually self-fertilised, have
primarily arisen through the neglect of insects, and have in consequence
assumed their present floral structures" (p. 282).
In a letter just received from Mr. Henslow, he gives a few additional
illustrations of his views, of which the following are the most
important: "Passing to Incompletae, the orders known collectively as
'Cyclospermeae' are related to Caryophylleae; and to my mind are
degradations from it, of which Orache is anemophilous. Cupuliferae have
an inferior ovary and rudimentary calyx-limb on the top. These, as far
as I know, cannot be interpreted except as degradations. The whole of
Monocotyledons appear to me (from anatomical reasons especially) to be
degradations from Dicotyledons, and primarily through the agency of
growth in water. Many subsequently became terrestrial, but retained the
effects of their primitive habitat through heredity. The 3-merous [sic]
perianth of grasses, the parts of the flower being in whorls, point to a
degradation from a sub-liliaceous condition."
Mr. Henslow informs me that he has long held these views, but, as far as
he knows, alone. Mr. Grant Allen, however, set forth a similar theory in
his _Vignettes from Nature_ (p. 15) and more fully in _The Colours of
Flowers_ (chap. v.), where he develops it fully and uses similar
arguments to those of Mr. Henslow.]
[Footnote 156: H. Müller gives ample proof of this in his _Fertilisation
of Flowers_.]
[Footnote 157: _Cross-and Self-Fertilisation_, p. 27.]
[Footnote 158: _Animals and Plants_, vol. ii. p. 145.]
[Footnote 159: Müller's _Fertilisation of Flowers_, pp. 448, 455. Other
cases of recent degradation and readaptation to insect-fertilisation are
given by Professor Henslow (see footnote, p. 324).]
[Footnote 160: _The Colour Sense_, by Grant Allen, p. 95.]
[Footnote 161: _The Colour Sense_, chap. ix.]
[Footnote 162: See _Origin of Species_, sixth edition, p. 220.]
CHAPTER XII
THE GEOGRAPHICAL DISTRIBUTION OF ORGANISMS
The facts to be explained--The conditions which have determined
distribution--The permanence of oceans--Oceanic and continental
areas--Madagascar and New Zealand--The teachings of the
thousand-fathom line--The distribution of marsupials--The
distribution of tapirs--Powers of dispersal as illustrated by
insular organisms--Birds and insects at sea--Insects at great
altitudes--The dispersal of plants--Dispersal of seeds by the
wind--Mineral matter carried by the wind--Objections to the
theory of wind-dispersal answered--Explanation of north
temperate plants in the southern hemisphere--No proof of
glaciation in the tropics--Lower temperature not needed to
explain the facts--Concluding remarks.
The theory which we may now take as established--that all the existing
forms of life have been derived from other forms by a natural process of
descent with modification, and that this same process has been in action
during past geological time--should enable us to give a rational account
not only of the peculiarities of form and structure presented by animals
and plants, but also of their grouping together in certain areas, and
their general distribution over the earth's surface.
In the absence of any exact knowledge of the facts of distribution, a
student of the theory of evolution might naturally anticipate that all
groups of allied organisms would be found in the same region, and that,
as he travelled farther and farther from any given centre, the forms of
life would differ more and more from those which prevailed at the
starting-point, till, in the remotest regions to which he could
penetrate, he would find an entirely new assemblage of animals and
plants, altogether unlike those with which he was familiar. He would
also anticipate that diversities of climate would always be associated
with a corresponding diversity in the forms of life.
Now these anticipations are to a considerable extent justified.
Remoteness on the earth's surface is usually an indication of diversity
in the fauna and flora, while strongly contrasted climates are always
accompanied by a considerable contrast in the forms of life. But this
correspondence is by no means exact or proportionate, and the converse
propositions are often quite untrue. Countries which are near to each
other often differ radically in their animal and vegetable productions;
while similarity of climate, together with moderate geographical
proximity, are often accompanied by marked diversities in the prevailing
forms of life. Again, while many groups of animals--genera, families,
and sometimes even orders--are confined to limited regions, most of the
families, many genera, and even some species are found in every part of
the earth. An enumeration of a few of these anomalies will better
illustrate the nature of the problem we have to solve.
As examples of extreme diversity, notwithstanding geographical
proximity, we may adduce Madagascar and Africa, whose animal and
vegetable productions are far less alike than are those of Great Britain
and Japan at the remotest extremities of the great northern continent;
while an equal, or perhaps even a still greater, diversity exists
between Australia and New Zealand. On the other hand, Northern Africa
and South Europe, though separated by the Mediterranean Sea, have faunas
and floras which do not differ from each other more than do the various
countries of Europe. As a proof that similarity of climate and general
adaptability have had but a small part in determining the forms of life
in each country, we have the fact of the enormous increase of rabbits
and pigs in Australia and New Zealand, of horses and cattle in South
America, and of the common sparrow in North America, though in none of
these cases are the animals natives of the countries in which they
thrive so well. And lastly, in illustration of the fact that allied
forms are not always found in adjacent regions, we have the tapirs,
which are found only on opposite sides of the globe, in tropical America
and the Malayan Islands; the camels of the Asiatic deserts, whose
nearest allies are the llamas and alpacas of the Andes; and the
marsupials, only found in Australia and on the opposite side of the
globe, in America. Yet, again, although mammalia may be said to be
universally distributed over the globe, being found abundantly on all
the continents and on a great many of the larger islands, yet they are
entirely wanting in New Zealand, and in a considerable number of other
islands which are, nevertheless, perfectly able to support them when
introduced.
Now most of these difficulties can be solved by means of well-known
geographical and geological facts. When the productions of remote
countries resemble each other, there is almost always continuity of land
with similarity of climate between them. When adjacent countries differ
greatly in their productions, we find them separated by a sea or strait
whose great depth is an indication of its antiquity or permanence. When
a group of animals inhabits two countries or regions separated by wide
oceans, it is found that in past geological times the same group was
much more widely distributed, and may have reached the countries it
inhabits from an intermediate region in which it is now extinct. We
know, also, that countries now united by land were divided by arms of
the sea at a not very remote epoch; while there is good reason to
believe that others now entirely isolated by a broad expanse of sea were
formerly united and formed a single land area. There is also another
important factor to be taken account of in considering how animals and
plants have acquired their present peculiarities of
distribution,--changes of climate. We know that quite recently a glacial
epoch extended over much of what are now the temperate regions of the
northern hemisphere, and that consequently the organisms which inhabit
those parts must be, comparatively speaking, recent immigrants from more
southern lands. But it is a yet more important fact that, down to middle
Tertiary times at all events, an equable temperate climate, with a
luxuriant vegetation, extended to far within the arctic circle, over
what are now barren wastes, covered for ten months of the year with snow
and ice. The arctic zone has, therefore, been in past times capable of
supporting almost all the forms of life of our temperate regions; and we
must take account of this condition of things whenever we have to
speculate on the possible migrations of organisms between the old and
new continents.
_The Conditions which have determined Distribution._
When we endeavour to explain in detail the facts of the existing
distribution of organic beings, we are confronted by several preliminary
questions, upon the solution of which will depend our treatment of the
phenomena presented to us. Upon the theory of descent which we have
adopted, all the different species of a genus, as well as all the genera
which compose a family or higher group, have descended from some common
ancestor, and must therefore, at some remote epoch, have occupied the
same area, from which their descendants have spread to the regions they
now inhabit. In the numerous cases in which the same group now occupies
countries separated by oceans or seas, by lofty mountain-chains, by wide
deserts, or by inhospitable climates, we have to consider how the
migration which must certainly have taken place has been effected. It is
possible that during some portion of the time which has elapsed since
the origin of the group the interposing barriers have not been in
existence; or, on the other hand, the particular organisms we are
dealing with may have the power of overpassing the barriers, and thus
reaching their present remote dwelling-places. As this is really the
fundamental question of distribution on which the solution of all its
more difficult problems depends, we have to inquire, in the first place,
what is the nature of, and what are the limits to, the changes of the
earth's surface, especially during the Tertiary and latter part of the
Secondary periods, as it was during those periods that most of the
existing types of the higher animals and plants came into existence;
and, in the next place, what are the extreme limits of the powers of
dispersal possessed by the chief groups of animals and plants. We will
first consider the question of barriers, more especially those formed by
seas and oceans.
_The Permanence of Oceans._
It was formerly a very general belief, even amongst geologists, that the
great features of the earth's surface, no less than the smaller ones,
were subject to continual mutations, and that during the course of
known geological time the continents and great oceans had again and
again changed places with each other. Sir Charles Lyell, in the last
edition of his _Principles of Geology_ (1872), said: "Continents,
therefore, although permanent for whole geological epochs, shift their
positions entirely in the course of ages;" and this may be said to have
been the orthodox opinion down to the very recent period when, by means
of deep-sea soundings, the nature of the ocean bottom was made known.
The first person to throw doubt on this view appears to have been the
veteran American geologist, Professor Dana. In 1849, in the Report of
Wilke's Exploring Expedition, he adduced the argument against a former
continent in the Pacific during the Tertiary period, from the absence of
all native quadrupeds. In 1856, in articles in the _American Journal_,
he discussed the development of the American continent, and argued for
its general permanence; and in his _Manual of Geology_ in 1863 and later
editions, the same views were more fully enforced and were latterly
applied to all continents. Darwin, in his _Journal of Researches_,
published in 1845, called attention to the fact that all the small
islands far from land in the Pacific, Indian, and Atlantic Oceans are
either of coralline or volcanic formation. He excepted, however, the
Seychelles and St. Paul's rocks; but the former have since been shown to
be no exception, as they consist entirely of coral rock; and although
Darwin himself spent a few hours on St. Paul's rocks on his outward
voyage in the _Beagle_, and believed he had found some portions of them
to be of a "cherty," and others of a "felspathic" nature, this also has
been shown to be erroneous, and the careful examination of the rocks by
the Abbé Renard clearly proves them to be wholly of volcanic
origin.[163] We have, therefore, at the present time, absolutely no
exception whatever to the remarkable fact that all the oceanic islands
of the globe are either of volcanic or coral formation; and there is,
further, good reason to believe that those of the latter class in every
case rest upon a volcanic foundation.
In his _Origin of Species_, Darwin further showed that no true oceanic
island had any native mammals or batrachia when first discovered, this
fact constituting the test of the class to which an island belongs;
whence he argued that none of them had ever been connected with
continents, but all had originated in mid-ocean. These considerations
alone render it almost certain that the areas now occupied by the great
oceans have never, during known geological time, been occupied by
continents, since it is in the highest degree improbable that every
fragment of those continents should have completely disappeared, and
have been replaced by volcanic islands rising out of profound oceanic
abysses; but recent research into the depth of the oceans and the nature
of the deposits now forming on their floors, adds greatly to the
evidence in this direction, and renders it almost a certainty that they
represent very ancient if not primaeval features of the earth's surface.
A very brief outline of the nature of this evidence will be now given.
Share with your friends: |