The researches of the _Challenger_ expedition into the nature of the
sea-bottom show, that the whole of the land debris brought down by
rivers to the ocean (with the exception of pumice and other floating
matter), is deposited comparatively near to the shores, and that the
fineness of the material is an indication of the distance to which it
has been carried. Everything in the nature of gravel and sand is laid
down within a very few miles of land, only the finer muddy sediments
being carried out for 20 or 50 miles, and the very finest of all, under
the most favourable conditions, rarely extending beyond 150, or at the
utmost, 300 miles from land into the deep ocean.[164] Beyond these
distances, and covering the entire ocean floor, are various oozes formed
wholly from the debris of marine organisms; while intermingled with
these are found various volcanic products which have been either carried
through the air or floated on the surface, and a small but perfectly
recognisable quantity of meteoric matter. Ice-borne rocks are also found
abundantly scattered over the ocean bottom within a definite distance of
the arctic and antarctic circles, clearly marking out the limit of
floating icebergs in recent geological times.
Now the whole series of marine stratified rocks, from the earliest
Palaeozoic to the most recent Tertiary beds, consist of materials
closely corresponding to the land debris now being deposited within a
narrow belt round the shores of all continents; while no rocks have been
found which can be identified with the various oozes now forming in the
deep abysses of the ocean. It follows, therefore, that all the
geological formations have been formed in comparatively shallow water,
and always adjacent to the continental land of the period. The great
thickness of some of the formations is no indication of a deep sea, but
only of slow subsidence during the time that the deposition was in
progress. This view is now adopted by many of the most experienced
geologists, especially by Dr. Archibald Geikie, Director of the
Geological Survey of Great Britain, who, in his lecture on "Geographical
Evolution," says: "From all this evidence we may legitimately conclude
that the present land of the globe, though consisting in great measure
of marine formations, has never lain under the deep sea; but that its
site must always have been near land. Even its thick marine limestones
are the deposits of comparatively shallow water."[165]
But besides these geological and physical considerations, there is a
mechanical difficulty in the way of repeated change of position of
oceans and continents which has not yet received the attention it
deserves. According to the recent careful estimate by Mr. John Murray,
the land area of the globe is to the water area as ·28 to ·72. The mean
height of the land above sea-level is 2250 feet, while the mean depth of
the ocean is 14,640 feet. Hence the bulk of dry land is 23,450,000 cubic
miles, and that of the waters of the ocean 323,800,000 cubic miles; and
it follows that if the whole of the solid matter of the earth's surface
were reduced to one level, it would be everywhere covered by an ocean
about two miles deep. The accompanying diagram will serve to render
these figures more intelligible. The length of the sections of land and
ocean are in the proportion of their respective areas, while the mean
height of the land and the mean depth of the ocean are exhibited on a
greatly increased vertical scale. If we considered the continents and
their adjacent oceans separately they would differ a little, but not
very materially, from this diagram; in some cases the proportion of land
to ocean would be a little greater, in others a little less.
[Illustration: FIG. 32.]
Now, if we try to imagine a process of elevation and depression by which
the sea and land shall completely change places, we shall be met by
insuperable difficulties. We must, in the first place, assume a general
equality between elevation and subsidence during any given period,
because if the elevation over any extensive continental area were not
balanced by some subsidence of approximately equal amount, an
unsupported hollow would be left under the earth's crust. Let us now
suppose a continental area to sink, and an adjacent oceanic area to
rise, it will be seen that the greater part of the land will disappear
long before the new land has approached the surface of the ocean. This
difficulty will not be removed by supposing a portion of a continent to
subside, and the immediately adjacent portion of the ocean on the other
side of the continent to rise, because in almost every case we find that
within a comparatively short distance from the shores of all existing
continents, the ocean floor sinks rapidly to a depth of from 2000 to
3000 fathoms, and maintains a similar depth, generally speaking, over a
large portion of the oceanic areas. In order, therefore, that any area
of continental extent be upraised from the great oceans, there must be a
subsidence of a land area five or six times as great, unless it can be
shown that an extensive elevation of the ocean floor up to and far
above the surface could occur without an equivalent depression
elsewhere. The fact that the waters of the ocean are sufficient to cover
the whole globe to a depth of two miles, is alone sufficient to indicate
that the great ocean basins are permanent features of the earth's
surface, since any process of alternation of these with the land areas
would have been almost certain to result again and again in the total
disappearance of large portions, if not of all, of the dry land of the
globe. But the continuity of terrestrial life since the Devonian and
Carboniferous periods, and the existence of very similar forms in the
corresponding deposits of every continent--as well as the occurrence of
sedimentary rocks, indicating the proximity of land at the time of their
deposit, over a large portion of the surface of all the continents, and
in every geological period--assure us that no such disappearance has
ever occurred.
_Oceanic and Continental Areas._
When we speak of the permanence of oceanic and continental areas as one
of the established facts of modern research, we do not mean that
existing continents and oceans have always maintained the exact areas
and outlines that they now present, but merely, that while all of them
have been undergoing changes in outline and extent from age to age, they
have yet maintained substantially the same positions, and have never
actually changed places with each other. There are, moreover, certain
physical and biological facts which enable us to mark out these areas
with some confidence.
We have seen that there are a large number of islands which may be
classed as oceanic, because they have never formed parts of continents,
but have originated in mid-ocean, and have derived their forms of life
by migration across the sea. Their peculiarities are seen to be very
marked in comparison with those islands which there is good reason to
believe are really fragments of more extensive land areas, and are hence
termed "continental." These continental islands consist in every case of
a variety of stratified rocks of various ages, thus corresponding
closely with the usual structure of continents; although many of the
islands are small like Jersey or the Shetland Islands, or far from
continental land like the Falkland Islands or New Zealand. They all
contain indigenous mammalia or batrachia, and generally a much greater
variety of birds, reptiles, insects, and plants, than do the oceanic
islands. From these various characteristics we conclude that they have
all once formed parts of continents, or at all events of much larger
land areas, and have become isolated, either by subsidence of the
intervening land or by the effects of long-continued marine denudation.
Now, if we trace the thousand-fathom line around all our existing
continents we find that, with only two exceptions, every island which
can be classed as "continental" falls within this line, while all that
lie beyond it have the undoubted characteristics of "oceanic" islands.
We, therefore, conclude that the thousand-fathom line marks out,
approximately, the "continental area,"--that is, the limits within which
continental development and change throughout known geological time have
gone on. There may, of course, have been some extensions of land beyond
this limit, while some areas within it may always have been ocean; but
so far as we have any direct evidence, this line may be taken to mark
out, approximately, the most probable boundary between the "continental
area," which has always consisted of land and shallow sea in varying
proportions, and the great oceanic basins, within the limits of which
volcanic activity has been building up numerous islands, but whose
profound depths have apparently undergone little change.
_Madagascar and New Zealand._
The two exceptions just referred to are Madagascar and New Zealand, and
all the evidence goes to show that in these cases the land connection
with the nearest continental area was very remote in time. The
extraordinary isolation of the productions of Madagascar--almost all the
most characteristic forms of mammalia, birds, and reptiles of Africa
being absent from it--renders it certain that it must have been
separated from that continent very early in the Tertiary, if not as far
back as the latter part of the Secondary period; and this extreme
antiquity is indicated by a depth of considerably more than a thousand
fathoms in the Mozambique Channel, though this deep portion is less than
a hundred miles wide between the Comoro Islands and the mainland.[166]
Madagascar is the only island on the globe with a fairly rich mammalian
fauna which is separated from a continent by a depth greater than a
thousand fathoms; and no other island presents so many peculiarities in
these animals, or has preserved so many lowly organised and archaic
forms. The exceptional character of its productions agrees exactly with
its exceptional isolation by means of a very deep arm of the sea.
New Zealand possesses no known mammals and only a single species of
batrachian; but its geological structure is perfectly continental. There
is also much evidence that it does possess one mammal, although no
specimens have been yet obtained.[167] Its reptiles and birds are highly
peculiar and more numerous than in any truly oceanic island. Now the sea
which directly separates New Zealand from Australia is more than 2000
fathoms deep, but in a north-west direction there is an extensive bank
under 1000 fathoms, extending to and including Lord Howe's Island, while
north of this are other banks of the same depth, approaching towards a
submarine extension of Queensland on the one hand, and New Caledonia on
the other, and altogether suggestive of a land union with Australia at
some very remote period. Now the peculiar relations of the New Zealand
fauna and flora with those of Australia and of the tropical Pacific
Islands to the northward indicate such a connection, probably during the
Cretaceous period; and here, again, we have the exceptional depth of the
dividing sea and the form of the ocean bottom according well with the
altogether exceptional isolation of New Zealand, an isolation which has
been held by some naturalists to be great enough to justify its claim to
be one of the primary Zoological Regions.
_The Teachings of the Thousand-Fathom Line._
If now we accept the annexed map as showing us approximately how far
beyond their present limits our continents may have extended during any
portion of the Tertiary and Secondary periods, we shall obtain a
foundation of inestimable value for our inquiries into those migrations
of animals and plants during past ages which have resulted in their
present peculiarities of distribution. We see, for instance, that the
South American and African continents have always been separated by
nearly as wide an ocean as at present, and that whatever similarities
there may be in their productions must be due to the similar forms
having been derived from a common origin in one of the great northern
continents. The radical difference between the higher forms of life of
the two continents accords perfectly with their permanent separation. If
there had been any direct connection between them during Tertiary times,
we should hardly have found the deep-seated differences between the
Quadrumana of the two regions--no family even being common to both; nor
the peculiar Insectivora of the one continent, and the equally peculiar
Edentata of the other. The very numerous families of birds quite
peculiar to one or other of these continents, many of which, by their
structural isolation and varied development of generic and specific
forms, indicate a high antiquity, equally suggest that there has been no
near approach to a land connection during the same epoch.
Looking to the two great northern continents, we see indications of a
possible connection between them both in the North Atlantic and the
North Pacific oceans; and when we remember that from middle Tertiary
times backward--so far as we know continuously to the earliest
Palaeozoic epoch--a temperate and equable climate, with abundant woody
vegetation, prevailed up to and within the arctic circle, we see what
facilities may have been afforded for migration from one continent to
the other, sometimes between America and Europe, sometimes between
America and Asia. Admitting these highly probable connections, no
bridging of the Atlantic in more southern latitudes (of which there is
not a particle of evidence) will have been necessary to account for all
the intermigration that has occurred between the two continents. If, on
the other hand, we remember how long must have been the route, and how
diverse must always have been the conditions between the more northern
and the more southern portions of the American and Euro-Asiatic
continents, we shall not be surprised that many widespread forms in
either continent have not crossed into the other; and that while the
skunks (Mephitis), the pouched rats (Saccomyidae), and the turkeys
(Meleagris) are confined to America, the pigs and the hedgehogs, the
true flycatchers and the pheasants are found only in the Euro-Asiatic
continent. But, just as there have been periods which facilitated
intermigration between America and the Old World, there have almost
certainly been periods, perhaps of long duration even geologically, when
these continents have been separated by seas as wide as, or even wider
than, those of the present day; and thus may be explained such curious
anomalies as the origination of the camel-tribe in America, and its
entrance into Asia in comparatively recent Tertiary times, while the
introduction of oxen and bears into America from the Euro-Asiatic
continent appears to have been equally recent.[168]
We shall find on examination that this view of the general permanence of
the oceanic and continental areas, with constant minor fluctuations of
land and sea over the whole extent of the latter, enables us to
understand, and offer a rational explanation of, most of the difficult
problems of geographical distribution; and further, that our power of
doing this is in direct proportion to our acquaintance with the
distribution of fossil forms of life during the Tertiary period. We
must, also, take due note of many other facts of almost equal importance
for a due appreciation of the problems presented for solution, the most
essential being, the various powers of dispersal possessed by the
different groups of animals and plants, the geological antiquity of the
species and genera, and the width and depth of the seas which separate
the countries they, inhabit. A few illustrations will now be given of
the way in which these branches of knowledge enable us to deal with the
difficulties and anomalies that present themselves.
_The Distribution of Marsupials._
This singular and lowly organised type of mammals constitutes almost the
sole representative of the class in Australia and New Guinea, while it
is entirely unknown in Asia, Africa, or Europe. It reappears in America,
where several species of opossums are found; and it was long thought
necessary to postulate a direct southern connection of these distant
countries, in order to account for this curious fact of distribution.
When, however, we look to what is known of the geological history of the
marsupials the difficulty vanishes. In the Upper Eocene deposits of
Western Europe the remains of several animals closely allied to the
American opossums have been found; and as, at this period, a very mild
climate prevailed far up into the arctic regions, there is no difficulty
in supposing that the ancestors of the group entered America from Europe
or Northern Asia during early Tertiary times.
But we must go much further back for the origin of the Australian
marsupials. All the chief types of the higher mammalia were in existence
in the Eocene, if not in the preceding Cretaceous period, and as we find
none of these in Australia, that country must have been finally
separated from the Asiatic continent during the Secondary or Mesozoic
period. Now during that period, in the Upper and the Lower Oolite and in
the still older Trias, the jaw-bones of numerous small mammalia have
been found, forming eight distinct genera, which are believed to have
been either marsupials or some allied lowly forms. In North America
also, in beds of the Jurassic and Triassic formations, the remains of an
equally great variety of these small mammalia have been discovered; and
from the examination of more than sixty specimens, belonging to at least
six distinct genera, Professor Marsh is of opinion that they represent a
generalised type, from which the more specialised marsupials and
insectivora were developed.
From the fact that very similar mammals occur both in Europe and America
at corresponding periods, and in beds which represent a long succession
of geological time, and that during the whole of this time no fragments
of any higher forms have been discovered, it seems probable that both
the northern continents (or the larger portion of their area) were then
inhabited by no other mammalia than these, with perhaps other equally
low types. It was, probably, not later than the Jurassic age when some
of these primitive marsupials were able to enter Australia, where they
have since remained almost completely isolated; and, being free from
the competition of higher forms, they have developed into the great
variety of types we now behold there. These occupy the place, and have
to some extent acquired the form and structure of distinct orders of the
higher mammals--the rodents, the insectivora, and the carnivora,--while
still preserving the essential characteristics and lowly organisation of
the marsupials. At a much later period--probably in late Tertiary
times--the ancestors of the various species of rats and mice which now
abound in Australia, and which, with the aerial bats, constitute its
only forms of placental mammals, entered the country from some of the
adjacent islands. For this purpose a land connection was not necessary,
as these small creatures might easily be conveyed among the branches or
in the crevices of trees uprooted by floods and carried down to the sea,
and then floated to a shore many miles distant. That no actual land
connection with, or very close approximation to, an Asiatic island has
occurred in recent times, is sufficiently proved by the fact that no
squirrel, pig, civet, or other widespread mammal of the Eastern
hemisphere has been able to reach the Australian continent.
_The Distribution of Tapirs._
These curious animals form one of the puzzles of geographical
distribution, being now confined to two very remote regions of the
globe--the Malay Peninsula and adjacent islands of Sumatra and Borneo,
inhabited by one species, and tropical America, where there are three or
four species, ranging from Brazil to Ecuador and Guatemala. If we
considered these living forms only, we should be obliged to speculate on
enormous changes of land and sea in order that these tropical animals
might have passed from one country to the other. But geological
discoveries have rendered all such hypothetical changes unnecessary.
During Miocene and Pliocene times tapirs abounded over the whole of
Europe and Asia, their remains having been found in the tertiary
deposits of France, India, Burmah, and China. In both North and South
America fossil remains of tapirs occur only in caves and deposits of
Post-Pliocene age, showing that they are comparatively recent immigrants
into that continent. They perhaps entered by the route of Kamchatka and
Alaska, where the climate, even now so much milder and more equable than
on the north-east of America, might have been warm enough in late
Pliocene times to have allowed the migration of these animals. In Asia
they were driven southwards by the competition of numerous higher and
more powerful forms, but have found a last resting-place in the swampy
forests of the Malay region.
_What these Facts Prove._
Now these two cases, of the marsupials and the tapirs, are in the
highest degree instructive, because they show us that, without any
hypothetical bridging of deep oceans, and with only such changes of sea
and land as are indicated by the extent of the comparatively shallow
seas surrounding and connecting the existing continents, we are able to
account for the anomaly of allied forms occurring only in remote and
widely separated areas. These examples really constitute crucial tests,
because, of all classes of animals, mammalia are least able to surmount
physical barriers. They are obviously unable to pass over wide arms of
the sea, while the necessity for constant supplies of food and water
renders sandy deserts or snow-clad plains equally impassable. Then,
again, the peculiar kinds of food on which alone many of them can
subsist, and their liability to the attacks of other animals, put a
Share with your friends: |