toes, which would accordingly diminish in size, till, after a long
series of changes, the records of which are so well preserved in the
American tertiary rocks, the true one-toed horse was developed. In soft
or swampy ground, on the other hand, the tendency would be to spread out
the foot so that there were two toes on each side. The two middle toes
would thus be most used and most subject to strains, and would,
therefore, increase at the expense of the lateral toes. There would be,
no doubt, an advantage in these two functional toes being of equal size,
so as to prevent twisting of the foot while walking; and variations
tending to bring this about would be advantageous, and would therefore
be preserved. Thus, by a parallel series of changes in another
direction, adapted to a distinct set of conditions, we should arrive at
the symmetrical divided hoofs of our deer and cattle. The fact that
sheep and goats are specially mountain and rock-loving animals may be
explained by their being a later modification, since the divided hoof
once formed is evidently well adapted to secure a firm footing on rugged
and precipitous ground, although it could hardly have been first
developed in such localities. Mr. Cope thus concludes: "Certain it is
that the length of the bones in the feet of the ungulate orders has a
direct relation to the dryness of the ground they inhabit, and the
possibility of speed which their habit permits them or necessarily
imposes on them."[205]
If there is any truth in the explanation here briefly summarised, it
must entirely depend on the fact of individual modifications thus
produced being hereditary, and we yet await the proof of this. In the
meantime it is clear that the very same results could have been brought
about by variation and natural selection. For the toes, like all other
organs, vary in size and proportions, and in their degree of union or
separation; and if in one group of animals it was beneficial to have the
middle toe larger and longer, and in another set to have the two middle
toes of the same size, nothing can be more certain than that these
particular modifications would be continuously preserved, and the very
results we see ultimately produced.
The oft-repeated objections that the cause of variations is unknown,
that there must be something to determine variations in the right
direction; that "natural selection includes no actively progressive
principle, but must wait for the development of variation, and then,
after securing the survival of the best, wait again for the best to
project its own variations for selection," we have already sufficiently
answered by showing that variation--in abundant or typical species--is
always present in ample amount; that it exists in all parts and organs;
that these vary, for the most part, independently, so that any required
combination of variations can be secured; and finally, that all
variation is necessarily either in excess or defect of the mean
condition, and that, consequently, the right or favourable variations
are so frequently present that the unerring power of natural selection
never wants materials to work upon.
_Supposed Action of Animal Intelligence._
The following passage briefly summarises Mr. Cope's position:
"Intelligence is a conservative principle, and will always direct effort
and use into lines which will be beneficial to its possessor. Here we
have the source of the fittest, _i.e._ addition of parts by increase and
location of growth-force, directed by the influence of various kinds of
compulsion in the lower, and intelligent option among higher animals.
Thus intelligent choice, taking advantage of the successive evolution of
physical conditions, may be regarded as the _originator of the fittest_,
while natural selection is the tribunal to which all results of
accelerated growth are submitted. This preserves or destroys them, and
determines the new points of departure on which accelerated growth shall
build."[206]
This notion of "intelligence"--the intelligence of the animal
itself--determining its own variation, is so evidently a very partial
theory, inapplicable to the whole vegetable kingdom, and almost so to
all the lower forms of animals, amongst which, nevertheless, there is
the very same adaptation and co-ordination of parts and functions as
among the highest, that it is strange to see it put forward with such
confidence as necessary for the completion of Darwin's theory. If "the
various kinds of compulsion"--by which are apparently meant the laws of
variation, growth, and reproduction, the struggle for existence, and the
actions necessary to preserve life under the conditions of the animal's
environment--are sufficient to have developed the varied forms of the
lower animals and of plants, we can see no reason why the same
"compulsion" should not have carried on the development of the higher
animals also. The action of this "intelligent option" is altogether
unproved; while the acknowledgment that natural selection is the
tribunal which either preserves or destroys the variations submitted to
it, seems quite inconsistent with the statement that intelligent choice
is the "orginator of the fittest," since whatever is really "the
fittest" can never be destroyed by natural selection, which is but
another name for the survival of the fittest. If "the fittest" is always
definitely produced by some other power, then natural selection is not
wanted. If, on the other hand, both fit and unfit are produced, and
natural selection decides between them, that is pure Darwinism, and Mr.
Cope's theories have added nothing to it.
[Illustration: FIG. 35.--Transformation of Artemia salina to A.
Milhausenii; 1, tail-lobe of A. salina, and its transition through
2,3,4,5, to 6, into that of A. Milhausenii; 7, post-abdomen of A.
salina; 8, post-abdomen of a form bred in brackish water; 9, gill of A.
Milhausenii; 10, gill of A. salina. (From Schmankewitsch.)]
_Semper on the Direct Influence of the Environment._
Another eminent naturalist, Professor Karl Semper of Würzburg, also
adopts the view of the direct transforming power of the environment, and
has brought together an immense body of interesting facts showing the
influence of food, of light, of temperature, of still water and moving
water, of the atmosphere and its currents, of gravitation, and of other
organisms, in modifying the forms and other characteristics of
animals.[207] He believes that these various influences produce a direct
and important effect, and that this effect is accumulated by
inheritance; yet he acknowledges that we have no direct evidence of
this, and there is hardly a single case adduced in the book which is not
equally well explained by adaptation, brought about by the survival of
beneficial variations. Perhaps the most remarkable case he has brought
forward is that of the transformation of species of crustaceans by a
change in the saltness of the water (see Fig. 35). Artemia salina lives
in brackish water, while A. Milhausenii inhabits water which is much
salter. They differ greatly in the form of the tail-lobes, and in the
presence or absence of spines upon the tail, and had always been
considered perfectly distinct species. Yet either was transformed into
the other in a few generations, during which the saltness of the water
was gradually altered. Yet more, A. salina was gradually accustomed to
fresher water, and in the course of a few generations, when the water
had become perfectly fresh, the species was changed into Branchipus
stagnalis, which had always been considered to belong to a different
genus on account of differences in the form of the antennae and of the
posterior segments of the body (see Fig. 36). This certainly appears to
be a proof of change of conditions producing a change of form
independently of selection, and of that change of form, while remaining
under the same conditions, being inherited. Yet there is this
peculiarity in the case, that there is a chemical change in the water,
and that this water permeates the whole body, and must be absorbed by
the tissues, and thus affect the ova and even the reproductive
elements, and in this way may profoundly modify the whole organisation.
Why and how the external effects are limited to special details of the
structure we do not know; but it does not seem as if any far-reaching
conclusions as to the cumulative effect of external conditions on the
higher terrestrial animals and plants, can be drawn from such an
exceptional phenomenon. It seems rather analogous to those effects of
external influences on the very lowest organisms in which the vegetative
and reproductive organs are hardly differentiated, in which case such
effects are doubtless inherited.[208]
[Illustration: FIG. 36. _a._ Branchipus stagnalis. _b._ Artemia salina.]
_Professor Geddes's Theory of Variation in Plants._
In a paper read before the Edinburgh Botanical Society in 1886 Mr.
Patrick Geddes laid down the outlines of a fundamental theory of plant
variation, which he has further extended in the article "Variation and
Selection" in the _Encydopaedia Britannica_, and in a paper read before
the Linnaean Society but not yet published.
A theory of variation should deal alike with the origin of specific
distinctions and with those vaster differences which characterise the
larger groups, and he thinks it should answer such questions as--How an
axis comes to be arrested to form a flower? how the various forms of
inflorescence were evolved? how did perigynous or epigynous flowers
arise from hypogynous flowers? and many others equally fundamental.
Natural selection acting upon numerous accidental variations will not,
he urges, account for such general facts as these, which must depend on
some constant law of variation. This law he believes to be the
well-known antagonism of vegetative and reproductive growth acting
throughout the whole course of plant development; and he uses it to
explain many of the most characteristic features of the structure of
flowers and fruits.
Commencing with the origin of the flower, which all botanists agree in
regarding as a shortened branch, he explains this shortening as an
inevitable physiological fact, since the cost of the development of the
reproductive elements is so great as necessarily to check vegetative
growth. In the same manner the shortening of the inflorescence from
raceme to spike or umbel, and thence to the capitulum or dense
flower-head of the composite plants is brought about. This shortening,
carried still further, produces the flattened leaf-like receptacle of
Dorstenia, and further still the deeply hollowed fruity receptacle of
the fig.
The flower itself undergoes a parallel modification due to a similar
cause. It is formed by a series of modified leaves arranged round a
shortened axis. In its earlier stages the number of these modified
leaves is indefinite, as in many Ranunculaceae; and the axis itself is
not greatly shortened, as in Myosurus. The first advance is to a
definite number of parts and a permanently shortened axis, in the
arrangement termed hypogynous, in which all the whorls are quite
distinct from each other. In the next stage there is a further
shortening of the central axis, leaving the outer portion as a ring on
which the petals are inserted, producing the arrangement termed
perigynous. A still further advance is made by the contraction of the
axis, so as to leave the central part forming the ovary quite below the
flower, which is then termed epigynous.
These several modifications are said to be parallel and definite, and to
be determined by the continuous checking of vegetation by reproduction
along what is an absolute groove of progressive change. This being the
case, the importance of natural selection is greatly diminished. Instead
of selecting and accumulating spontaneous indefinite variations, its
function is to retard them after the stage of maximum utility has been
independently reached. The same simple conception is said to unlock
innumerable problems of vegetable morphology, large and small alike. It
explains the inevitable development of gymnosperm into angiosperm by the
checked vegetative growth of the ovule-bearing leaf or carpel; while
such minor adaptations as the splitting fruit of the geranium or the
cupped stigma of the pansy, can be no longer looked upon as achievements
of natural selection, but must be regarded as naturally traceable to
the vegetative checking of their respective types of leaf organ. Again,
a detailed examination of spiny plants practically excludes the
hypothesis of mammalian selection altogether, and shows spines to arise
as an expression of the diminishing vegetativeness--in fact, the ebbing
vitality of a species.[209]
_Objections to the Theory._
The theory here sketched out is enticing, and at first sight seems
calculated to throw much light on the history of plant development; but
on further consideration, it seems wanting in definiteness, while it is
beset with difficulties at every step. Take first the shortening of the
raceme into the umbel and the capitulum, said to be caused by arrest of
vegetative growth, due to the antagonism of reproduction. If this were
the whole explanation of the phenomenon, we should expect the quantity
of seed to increase as this vegetative growth diminished, since the seed
is the product of the reproductive energy of the plant, and its quantity
the best measure of that energy. But is this the case? The ranunculus
has comparatively few seeds, and the flowers are not numerous; while in
the same order the larkspur and the columbine have far more seeds as
well as more flowers, but there is no shortening of the raceme or
diminution of the foliage, although the flowers are large and complex.
So, the extremely shortened and compressed flower-heads of the
compositae produce comparatively few seeds--one only to each flower;
while the foxglove, with its long spike of showy flowers, produces an
enormous number.
Again, if the shortening of the central axis in the successive stages of
hypogynous, perigynous, and epigynous flowers were an indication of
preponderant reproduction and diminished vegetation, we should find
everywhere some clear indications of this fact. The plants with
hypogynous flowers should, as a rule, have less seed and more vigorous
and abundant foliage than those at the other extreme with epigynous
flowers. But the hypogynous poppies, pinks, and St. John's worts have
abundance of seed and rather scanty foliage; while the epigynous
dogwoods and honeysuckles have few seeds and abundant foliage. If,
instead of the number of the seeds, we take the size of the fruit as an
indication of reproductive energy, we find this at a maximum in the
gourd family, yet their rapid and luxuriant growth shows no diminution
of vegetative power. So that the statement that plant modifications
proceed "along an absolute groove of progressive change" is contradicted
by innumerable facts indicating advance and regression, improvement or
degradation, according as the ever-changing environment renders one form
more advantageous than the other. As one instance I may mention the
Anonaceae or custard-apple tribe, which are certainly an advance from
the Ranunculaceae; yet in the genus Polyalthea the fruit consists of a
number of separate carpels, each borne on a long stalk, as if reverting
to the primitive stalked carpellary leaves.
_On the Origin of Spines._
But perhaps the most extraordinary application of the theory is that
which considers spines to be an indication of the "ebbing vitality of a
species," and which excludes "mammalian selection altogether." If this
were true, spines should occur mainly in feeble, rare, and dying-out
species, instead of which we have the hawthorn, one of our most vigorous
shrubs or trees, with abundant vitality and an extensive range over the
whole Palaearctic region, showing that it is really a dominant species.
In North America the numerous thorny species of Crataegus are equally
vigorous, as are the false acacia (Robinia) and the honey-locust
(Gleditschia). Neither have the numerous species of very spiny Acacias
been noticed to be rarer or less vigorous than the unarmed kinds.
On the other point--that spines are not due to mammalian selection--we
are able to adduce what must be considered direct and conclusive
evidence. For if spines, admittedly produced by aborted branches,
petioles, or peduncles, are due solely or mainly to diminished
vegetativeness or ebbing vitality, they ought to occur in all countries
alike, or at all events in all whose similar conditions tend to check
vegetation; whereas, if they are, solely or mainly, developed as a
protection against the attacks of herbivorous mammals, they ought to be
most abundant where these are plentiful, and rare or absent where
indigenous mammalia are wanting. Oceanic islands, as compared with
continents, would thus furnish a crucial test of the two theories; and
Mr. Hemsley of Kew, who has specially studied insular floras, has given
me some valuable information on this point. He says: "There are no spiny
or prickly plants in the indigenous element of the St. Helena flora. The
relatively rich flora of the Sandwich Isles is not absolutely without a
prickly plant, but almost so. All the endemic genera are unarmed, and
the endemic species of almost every other genus. Even such genera as
Zanthoxylon, Acacia, Xylosoma, Lycium, and Solanum, of which there are
many armed species in other countries, are only represented by unarmed
species. The two endemic Rubi have the prickles reduced to the setaceous
condition, and the two palms are unarmed.
"The flora of the Galapagos includes a number of prickly plants, among
them several cacti (these have not been investigated and may be American
species), but I do not think one of the known endemic species of any
family is prickly or spiny.
"Spiny and prickly plants are also rare in New Zealand, but there are
the formidably armed species of wild Spaniard (Aciphylla), one species
of Rubus, the pungent-leaved Epacrideae and a few others."
Mr. J.G. Baker of Kew, who has specially studied the flora of Mauritius
and the adjacent islands, also writes me on this point. He says: "Taking
Mauritius alone, I do not call to mind a single species that is a
spinose endemic tree or shrub. If you take the whole group of islands
(Mauritius, Bourbon, Seychelles, and Rodriguez), there will be about a
dozen species, but then nine of these are palms. Leaving out palms, the
trees and shrubs of that part of the world are exceptionally
non-spinose."
These are certainly remarkable facts, and quite inexplicable on the
theory of spines being caused solely by checked vegetative growth, due
to weakness of constitution or to an arid soil and climate. For the
Galapagos and many parts of the Sandwich Islands are very arid, as is a
considerable part of the North Island of New Zealand. Yet in our own
moist climate and with our very limited number of trees and shrubs we
have about eighteen spiny or prickly species, more, apparently, than in
the whole endemic floras of the Mauritius, Sandwich Islands, and
Galapagos, though these are all especially rich in shrubby and arboreal
species. In New Zealand the prickly Rubus is a leafless trailing plant,
and its prickles are probably a protection against the large snails of
the country, several of which have shells from two to three and a half
inches long.[210] The "wild Spaniards" are very spiny herbaceous
Umbelliferae, and may have gained their spines to preserve them from
being trodden down or eaten by the Moas, which, for countless ages, took
the place of mammals in New Zealand. The exact use or meaning of the
spines in palms is more doubtful, though they are, no doubt, protective
against some animals; but it is certainly an extraordinary fact that in
the entire flora of the Mauritius, so largely consisting of trees and
shrubs, not a single endemic species should be thorny or spiny.
If now we consider that every continental flora produces a considerable
proportion of spiny and thorny species, and that these rise to a maximum
in South Africa, where herbivorous mammalia were (before the settlement
of the country), perhaps, more abundant and varied than in any other
part of the world; while another district, remarkable for well-armed
vegetation, is Chile, where the camel-like vicugnas, llamas, and
alpacas, and an abundance of large rodents wage perpetual war against
shrubby vegetation, we shall see the full significance of the almost
total absence of thorny and spiny plants in the chief oceanic islands;
and so far from "excluding the hypothesis of mammalian selection
altogether," we shall find in this hypothesis the only satisfactory
explanation of the facts.
From the brief consideration of Professor Geddes's theory now given, we
conclude that, although the antagonism between vegetative and
reproductive growth is a real agency, and must be taken account of in
our endeavour to explain many of the fundamental facts in the structure
and form of plants, yet it is so overpowered and directed at every step
by the natural selection of favourable variations, that the results of
its exclusive and unmodified action are nowhere to be found in nature.
It may be allowed to rank as one of those "laws of growth," of which so
many have now been indicated, and which were always recognised by Darwin
as underlying all variation; but unless we bear in mind that its action
must always be subordinated to natural selection, and that it is
continually checked, or diverted, or even reversed by the necessity of
adaptation to the environment, we shall be liable to fall into such
glaring errors as the imputing to "ebbing vitality" alone such a
widespread phenomenon as the occurrence of spines and thorns, while
ignoring altogether the influence of the organic environment in their
production.[211]
The sketch now given of the chief attempts that have been made to prove
that either the direct action of the environment or certain fundamental
Share with your friends: |