slightly developed in the antelopes of the woods and marshes. Thus, the
grys-bok is nearly uniform in colour, except the long black-tipped ears;
and it frequents the wooded mountains. The duyker-bok and the rhoode-bok
are wary bush-haunters, and have no marks but the small white patch
behind. The wood-haunting bosch-bok goes in pairs, and has hardly any
distinctive marks on its dusky chestnut coat, but the male alone is
horned. The large and handsome koodoo frequents brushwood, and its
vertical white stripes are no doubt protective, while its magnificent
spiral horns afford easy recognition. The eland, which is an inhabitant
of the open country, is uniformly coloured, being sufficiently
recognisable by its large size and distinctive form; but the Derbyan
eland is a forest animal, and has a protectively striped coat. In like
manner, the fine Speke's antelope, which lives entirely in the swamps
and among reeds, has pale vertical stripes on the sides (protective),
with white markings on face and breast for recognition. An inspection of
the figures of antelopes and other animals in Wood's _Natural History_,
or in other illustrated works, will give a better idea of the
peculiarities of recognition markings than any amount of description.
Other examples of such coloration are to be seen in the dusky tints of
the musk-sheep and the reindeer, to whom recognition at a distance on
the snowy plains is of more importance than concealment from their few
enemies. The conspicuous stripes and bands of the zebra and the quagga
are probably due to the same cause, as may be the singular crests and
face-marks of several of the monkeys and lemurs.[85]
[Illustration: FIG. 19--Recognition marks of three African plovers.]
Among birds, these recognition marks are especially numerous and
suggestive. Species which inhabit open districts are usually
protectively coloured; but they generally possess some distinctive
markings for the purpose of being easily recognised by their kind, both
when at rest and during flight. Such are, the white bands or patches on
the breast or belly of many birds, but more especially the head and neck
markings in the form of white or black caps, collars, eye-marks or
frontal patches, examples of which are seen in the three species of
African plovers figured on page 221.
Recognition marks during flight are very important for all birds which
congregate in flocks or which migrate together; and it is essential
that, while being as conspicuous as possible, the marks shall not
interfere with the general protective tints of the species when at rest.
Hence they usually consist of well-contrasted markings on the wings and
tail, which are concealed during repose but become fully visible when
the bird takes flight. Such markings are well seen in our four British
species of shrikes, each having quite different white marks on the
expanded wings and on the tail feathers; and the same is the case with
our three species of Saxicola--the stone-chat, whin-chat, and
wheat-ear--which are thus easily recognisable on the wing, especially
when seen from above, as they would be by stragglers looking out for
their companions. The figures opposite, of the wings of two African
species of stone-curlew which are sometimes found in the same districts,
well illustrates these specific recognition marks. Though not very
greatly different to our eyes, they are no doubt amply so to the sharp
vision of the birds themselves.
Besides the white patches on the primaries here shown, the secondary
feathers are, in some cases, so coloured as to afford very distinctive
markings during flight, as seen in the central secondary quills of two
African coursers (Fig. 21).
[Illustration: FIG. 20.--Oedicnemus vermiculatus (above). Oe.
senegalensis (below).]
Most characteristic of all, however, are the varied markings of the
outer tail-feathers, whose purpose is so well shown by their being
almost always covered during repose by the two middle feathers, which
are themselves quite unmarked and protectively tinted like the rest of
the upper surface of the body. The figures of the expanded tails of two
species of East Asiatic snipe, whose geographical ranges overlap each
other, will serve to illustrate this difference; which is frequently
much greater and modified in an endless variety of ways (Fig. 22).
Numbers of species of pigeons, hawks, finches, warblers, ducks, and
innumerable other birds possess this class of markings; and they
correspond so exactly in general character with those of the mammalia,
already described, that we cannot doubt they serve a similar
purpose.[86]
[Illustration: FIG. 21.--Secondary quills.]
[Illustration: FIG. 22.--Scolopax megala (upper). S. stenura (lower).]
Those birds which are inhabitants of tropical forests, and which need
recognition marks that shall be at all times visible among the dense
foliage, and not solely or chiefly during flight, have usually small but
brilliant patches of colour on the head or neck, often not interfering
with the generally protective character of their plumage. Such are the
bright patches of blue, red, or yellow, by which the usually green
Eastern barbets are distinguished; and similar bright patches of colour
characterise the separate species of small green fruit-doves. To this
necessity for specialisation in colour, by which each bird may easily
recognise its kind, is probably due that marvellous variety in the
peculiar beauties of some groups of birds. The Duke of Argyll, speaking
of the humming birds, made the objection that "A crest of topaz is no
better in the struggle for existence than a crest of sapphire. A frill
ending in spangles of the emerald is no better in the battle of life
than a frill ending in spangles of the ruby. A tail is not affected for
the purposes of flight, whether its marginal or its central feathers are
decorated with white;" and he goes on to urge that mere beauty and
variety for their own sake are the only causes of these differences.
But, on the principles here suggested, the divergence itself is useful,
and must have been produced _pari passu_ with the structural differences
on which the differentiation of species depends; and thus we have
explained the curious fact that prominent differences of colour often
distinguish species otherwise very closely allied to each other.
Among insects, the principle of distinctive coloration for recognition
has probably been at work in the production of the wonderful diversity
of colour and marking we find everywhere, more especially among the
butterflies and moths; and here its chief function may have been to
secure the pairing together of individuals of the same species. In some
of the moths this has been secured by a peculiar odour, which attracts
the males to the females from a distance; but there is no evidence that
this is universal or even general, and among butterflies, especially,
the characteristic colour and marking, aided by size and form, afford
the most probable means of recognition. That this is so is shown by the
fact that "the common white butterfly often flies down to a bit of paper
on the ground, no doubt mistaking it for one of its own species;" while,
according to Mr. Collingwood, in the Malay Archipelago, "a dead
butterfly pinned upon a conspicuous twig will often arrest an insect of
the same species in its headlong flight, and bring it down within easy
reach of the net, especially if it be of the opposite sex."[87] In a
great number of insects, no doubt, form, motions, stridulating sounds,
or peculiar odours, serve to distinguish allied species from each other,
and this must be especially the case with nocturnal insects, or with
those whose colours are nearly uniform and are determined by the need of
protection; but by far the larger number of day-flying and active
insects exhibit varieties of colour and marking, forming the most
obvious distinction between allied species, and which have, therefore,
in all probability been acquired in the process of differentiation for
the purpose of checking the intercrossing of closely allied forms.[88]
Whether this principle extends to any of the less highly organised
animals is doubtful, though it may perhaps have affected the higher
mollusca. But in marine animals it seems probable that the colours,
however beautiful, varied, and brilliant they may often be, are in most
cases protective, assimilating them to the various bright-coloured
seaweeds, or to some other animals which it is advantageous for them to
imitate.[89]
_Summary of the Preceding Exposition._
Before proceeding to discuss some of the more recondite phenomena of
animal coloration, it will be well to consider for a moment the extent
of the ground we have already covered. Protective coloration, in some of
its varied forms, has not improbably modified the appearance of one-half
of the animals living on the globe. The white of arctic animals, the
yellowish tints of the desert forms, the dusky hues of crepuscular and
nocturnal species, the transparent or bluish tints of oceanic creatures,
represent a vast host in themselves; but we have an equally numerous
body whose tints are adapted to tropical foliage, to the bark of trees,
or to the soil or dead leaves on or among which they habitually live.
Then we have the innumerable special adaptations to the tints and forms
of leaves, or twigs, or flowers; to bark or moss; to rock or pebble; by
which such vast numbers of the insect tribes obtain protection; and we
have seen that these various forms of coloration are equally prevalent
in the waters of the seas and oceans, and are thus coextensive with the
domain of life upon the earth. The comparatively small numbers which
possess "terrifying" or "alluring" coloration may be classed under the
general head of the protectively coloured.
But under the next head--colour for recognition--we have a totally
distinct category, to some extent antagonistic or complementary to the
last, since its essential principle is visibility rather than
concealment. Yet it has been shown, I think, that this mode of
coloration is almost equally important, since it not only aids in the
preservation of existing species and in the perpetuation of pure races,
but was, perhaps, in its earlier stages, a not unimportant factor in
their development. To it we owe most of the variety and much of the
beauty in the colours of animals; it has caused at once bilateral
symmetry and general permanence of type; and its range of action has
been perhaps equally extensive with that of coloration for concealment.
_Influence of Locality or of Climate on Colour._
Certain relations between locality and coloration have long been
noticed. Mr. Gould observed that birds from inland or continental
localities were more brightly coloured than those living near the
sea-coast or on islands, and he supposed that the more brilliant
atmosphere of the inland stations was the explanation of the
phenomenon.[90] Many American naturalists have observed similar facts,
and they assert that the intensity of the colours of birds and mammals
increases from north to south, and also with the increase of humidity.
This change is imputed by Mr. J.A. Allen to the direct action of the
environment. He says: "In respect to the correlation of intensity of
colour in animals with the degree of humidity, it would perhaps be more
in accordance with cause and effect to express the law of correlation as
a _decrease_ of intensity of colour with a _decrease_ of humidity, the
paleness evidently resulting from exposure and the blanching effect of
intense sunlight, and a dry, often intensely heated atmosphere. With the
decrease of the aqueous precipitation the forest growth and the
protection afforded by arborescent vegetation gradually also decreases,
as of course does also the protection afforded by clouds, the
excessively humid regions being also regions of extreme cloudiness,
while the dry regions are comparatively cloudless districts."[91] Almost
identical changes occur in birds, and are imputed by Mr. Allen to
similar causes.
It will be seen that Mr. Gould and Mr. Allen impute opposite effects to
the same cause, brilliancy or intensity of colour being due to a
brilliant atmosphere according to the former, while paleness of colour
is imputed by the latter to a too brilliant sun. According to the
principles which have been established by the consideration of arctic,
desert, and forest animals respectively, we shall be led to conclude
that there has been no direct action in this case, but that the effects
observed are due to the greater or less need of protection. The pale
colour that is prevalent in arid districts is in harmony with the
general tints of the surface; while the brighter tints or more intense
coloration, both southward and in humid districts, are sufficiently
explained by the greater shelter due to a more luxuriant vegetation and
a shorter winter. The advocates of the theory that intensity of light
directly affects the colours of organisms, are led into perpetual
inconsistencies. At one time the brilliant colours of tropical birds and
insects are imputed to the intensity of a tropical sun, while the same
intensity of sunlight is now said to have a "bleaching" effect. The
comparatively dull and sober hues of our northern fauna were once
supposed to be the result of our cloudy skies; but now we are told that
cloudy skies and a humid atmosphere intensify colour.
In my _Tropical Nature_ (pp. 257-264) I have called attention to what is
perhaps the most curious and decided relation of colour to locality
which has yet been observed--the prevalence of white markings in the
butterflies and birds of islands.
So many cases are adduced from so many different islands, both in the
eastern and western hemisphere, that it is impossible to doubt the
existence of some common cause; and it seems probable to me now, after a
fuller consideration of the whole subject of colour, that here too we
have one of the almost innumerable results of the principle of
protective coloration. White is, as a rule, an uncommon colour in
animals, but probably only because it is so conspicuous. Whenever it
becomes protective, as in the case of arctic animals and aquatic birds,
it appears freely enough; while we know that white varieties of many
species occur occasionally in the wild state, and that, under
domestication, white or parti-coloured breeds are freely produced. Now
in all the islands in which exceptionally white-marked birds and
butterflies have been observed, we find two features which would tend to
render the conspicuous white markings less injurious--a luxuriant
tropical vegetation, and a decided scarcity of rapacious mammals and
birds. White colours, therefore, would not be eliminated by natural
selection; but variations in this direction would bear their part in
producing the recognition marks which are everywhere essential, and
which, in these islands, need not be so small or so inconspicuous as
elsewhere.
_Concluding Remarks._
On a review of the whole subject, then, we must conclude that there is
no evidence of the individual or prevalent colours of organisms being
directly determined by the amount of light, or heat, or moisture, to
which they are exposed; while, on the other hand, the two great
principles of the need of concealment from enemies or from their prey,
and of recognition by their own kind, are so wide-reaching in their
application that they appear at first sight to cover almost the whole
ground of animal coloration. But, although they are indeed wonderfully
general and have as yet been very imperfectly studied, we are acquainted
with other modes of coloration which have a different origin. These
chiefly appertain to the very singular class of warning colours, from
which arise the yet more extraordinary phenomena of mimicry; and they
open up so curious a field of inquiry and present so many interesting
problems, that a chapter must be devoted to them. Yet another chapter
will be required by the subject of sexual differentiation of colour and
ornament, as to the origin and meaning of which I have arrived at
different conclusions from Mr. Darwin. These various forms of coloration
having been discussed and illustrated, we shall be in a position to
attempt a brief sketch of the fundamental laws which have determined the
general coloration of the animal world.
FOOTNOTES:
[Footnote 65: _Proceedings of the Royal Society_, No. 243, 1886;
_Transactions of the Royal Society_, vol. clxxviii. B. pp. 311-441.]
[Footnote 66: _A Naturalist's Wanderings in the Eastern Archipelago_, p.
460.]
[Footnote 67: _Trans. Phil. Soc._ (? _of S. Africa_), 1878, part iv, p.
27.]
[Footnote 68: _Proc. Zool. Soc._, 1862 p. 357.]
[Footnote 69: With reference to this general resemblance of insects to
their environment the following remarks by Mr. Poulton are very
instructive. He says: "Holding the larva of Sphinx ligustri in one hand
and a twig of its food-plant in the other, the wonder we feel is, not at
the resemblance but at the difference; we are surprised at the
difficulty experienced in detecting so conspicuous an object. And yet
the protection is very real, for the larvae will be passed over by those
who are not accustomed to their appearance, although the searcher may be
told of the presence of a large caterpillar. An experienced entomologist
may also fail to find the larvae till after a considerable search. This
is general protective resemblance, and it depends upon a general harmony
between the appearance of the organism and its whole environment. It is
impossible to understand the force of this protection for any larva,
without seeing it on its food-plant and in an entirely normal condition.
The artistic effect of green foliage is more complex than we often
imagine; numberless modifications are wrought by varied lights and
shadows upon colours which are in themselves far from uniform. In the
larva of Papilio machaon the protection is very real when the larva is
on the food-plant, and can hardly be appreciated at all when the two are
apart." Numerous other examples are given in the chapter on "Mimicry and
other Protective Resemblances among Animals," in my _Contributions to
the Theory of Natural Selection_.]
[Footnote 70: _The Naturalist in Nicaragua_, p. 19.]
[Footnote 71: R. Meldola, in _Proc. Zool. Soc._, 1873, p. 155.]
[Footnote 72: _Nature_, vol. iii. p. 166.]
[Footnote 73: _Trans. Ent. Soc. Lond._, 1878, p. 185.]
[Footnote 74: _Ibid._ (_Proceedings_, p. xlii.)]
[Footnote 75: Wallace's _Malay Archipelago_, vol. i. p. 204 (fifth
edition, p. 130), with figure.]
[Footnote 76: Moseley's _Notes by a Naturalist on the Challenger_.]
[Footnote 77: _Proceedings of the Boston Soc. of Nat. Hist._, vol. xiv.
1871.]
[Footnote 78: _Nature_, 1870, p. 376.]
[Footnote 79: _A Naturalist's Wanderings in the Eastern Archipelago_, p.
63.]
[Footnote 80: A beautiful drawing of this rare insect, Hymenopus
bicornis (in the nymph or active pupa state), was kindly sent me by Mr.
Wood-Mason, Curator of the Indian Museum at Calcutta. A species, very
similar to it, inhabits Java, where it is said to resemble a pink
orchid. Other Mantidae, of the genus Gongylus, have the anterior part of
the thorax dilated and coloured either white, pink, or purple; and they
so closely resemble flowers that, according to Mr. Wood-Mason, one of
them, having a bright violet-blue prothoracic shield, was found in Pegu
by a botanist, and was for a moment mistaken by him for a flower. See
_Proc. Ent. Soc. Lond._, 1878, p. liii.]
[Footnote 81: C. Dixon, in Seebohm's _History of British Birds_, vol.
ii. Introduction, p. xxvi. Many of the other examples here cited are
taken from the same valuable work.]
[Footnote 82: See A.H.S. Lucas, in _Proceedings of Royal Society of
Victoria_, 1887, p. 56.]
[Footnote 83: Professor Wm.H. Brewer of Yale College has shown that the
white marks or the spots of domesticated animals are rarely symmetrical,
but have a tendency to appear more frequently on the left side. This is
the case with horses, cattle, dogs, and swine. Among wild animals the
skunk varies considerably in the amount of white on the body, and this
too was found to be usually greatest on the left side. A close
examination of numerous striped or spotted species, as tigers, leopards,
jaguars, zebras, etc., showed that the bilateral symmetry was not exact,
although the general effect of the two sides was the same. This is
precisely what we should expect if the symmetry is not the result of a
general law of the organisation, but has been, in part at least,
produced and preserved for the useful purpose of recognition by the
animal's fellows of the same species, and especially by the sexes and
the young. See _Proc. of the Am. Ass. for Advancement of Science_, vol.
xxx. p. 246.]
[Footnote 84: _Descent of Man_, p. 542.]
[Footnote 85: It may be thought that such extremely conspicuous markings
as those of the zebra would be a great danger in a country abounding
with lions, leopards, and other beasts of prey; but it is not so. Zebras
usually go in bands, and are so swift and wary that they are in little
danger during the day. It is in the evening, or on moonlight nights,
when they go to drink, that they are chiefly exposed to attack; and Mr.
Francis Galton, who has studied these animals in their native haunts,
assures me, that in twilight they are not at all conspicuous, the
stripes of white and black so merging together into a gray tint that it
is very difficult to see them at a little distance. We have here an
admirable illustration of how a glaringly conspicuous style of marking
for recognition may be so arranged as to become also protective at the
time when protection is most needed; and we may also learn how
impossible it is for us to decide on the inutility of any kind of
coloration without a careful study of the habits of the species in its
native country.]
[Footnote 86: The principle of colouring for recognition was, I believe,
first stated in my article on "The Colours of Animals and Plants" in
Share with your friends: |