Fisher – at26-03, July 13 – July 26, 2013

Download 50.69 Kb.
Size50.69 Kb.
Pre-Cruise Meeting May 22, 2013

FISHER – AT26-03, July 13 – July 26, 2013.
General Program Overview:

  1. Scientific Objectives:

The primary work area for Expedition 327, and for Summer 2013 Atlantis/Jason expedition AT26-03, is on 3.5-3.6 Ma seafloor on the eastern flank of the Juan de Fuca Ridge. Six long-term borehole observatories (CORKs) in a 2.5 square kilometer area are separated by distances of 40 to 2460 m, five aligned along a trend of N20E (Holes 1026B, 1301A, 1301B, 1362A, 1362B) and one located 2.2 km to the east (Hole 1027C). All of these holes were drilled, cased, cored, and tested, then instrumented with CORKs using the drillship JOIDES Resolution. Secondary objectives may include: downloading data from additional CORK systems located at Sites 1024 and 1025 (located 30-40 nmi west of main work site), testing a Alvin/Jason heat flow probe insertion frame, and/or mapping/sampling at nearby Mama Bare, Papa Bare, or Zona Bare outcrops (within 10 nmi of primary work site).

The primary network of instrumented (CORK) sites allows continuous monitoring of pressure and temperature at depth, sampling of fluids and microbiological material, and measurement of fluid flow rate using autonomous instrumentation. These CORK systems require servicing with a submersible or ROV to download data, recover samples, manipulate valves, and replace a variety of experimental systems. This is a primary goal of the Summer 2013 expedition with the ROV Jason II and the R/V Atlantis. We will also recover a flow meter currently installed on one of the CORK observatories, and close a large-diameter ball valve, shutting off the discharge of hydrothermal fluid that was initiated in Summer 2011. Data from this flowmeter will be downloaded, and the instrument will be redeployed on another wellhead (or replaced with a second instrument), and a large-diameter ball valve on that wellhead will be opened, initiating flow from the CORK. These free flow experiments create pressure perturbations at surrounding CORKs, and also provide fluid and microbiological sampling opportunities. By monitoring the formation pressure response at the different observatories, located at different distances, depths, and directions from the CORK that will be allowed to discharge fluid, researchers will be able to assess the nature of crustal hydrologic properties. Wellhead instruments deployed during previous expeditions (fluid samplers, microbial growth incubators) will be recovered and replaced. A GeoMicrobiology sampling sled deployed on one wellhead will be recovered, and additional (active) fluid sampling will occur at various wellheads. Finally, we plan to recover one downhole instrument system in Hole 1301A, using a winch and floatation system or pulling with Jason or Madea, then sealing this CORK with a plug.

  1. Identify other PIs associated with the cruise:

Andy Bowen

  1. Identify the at-sea Chief Scientist: Andy Fisher

  1. Identify operating area:

ODP/IODP Sites 1026, 1027, 1301, 1362

47-45.5N, 127-45.0W

Depth: 2600 – 2700meters

  1. Voyage Dates and Leg #: July 13- 26, AT26-03. (Astoria - Astoria)

  2. Science party (size) – 23 bunks available. (with a UNOLS ‘mate intern’)

Pre-cruise and Administrative:

  1. Diplomatic clearance requirements for operations in EEZs :

CANADA – submitted 3/22/13.

  1. Financial responsibility: POs? How many to set up? Forklift?

  1. Personnel forms (Passports, Visas, Entry Fees)

  1. Any Special Food Requirements (Gluten Free, Vegetarian, Kosher, etc)

  1. Berthing Plan - 1 week prior to mobilization

Instrumentation & Technician Support [Installed Scientific Equipment] :
General Duties of Marine Technician [SSSG Tech]

Allison Heater, Catie Graver and one SSSG Mate Intern (UNOLS)
WHOI general use equipment required for cruise [Installed Scientific Equipment]:

  1. Mulitbeam {Incl. Water Column MB survey}

  2. Generate Maps on board ? Possibly.

  3. CTD 24/10 liter rosette with dual T/C sensors

  4. Freezers (all), -70o

  5. Walk In Freezer & Refer

  6. -70c / 3.5 cub ft freezer

  7. Bathymetry Sys. 3.2 & 12 kHz

  8. ADCP 75 kHz

  9. Science Sea Water supply to labs

  10. Fume hood

  11. High Sea’s Net – Skype – Transfer data ashore req. {URI Telepresence?}

  12. Navigation

  13. Sonardyne USBL

  14. Relay transponder for wire use

Our primary work will be with Jason, assume USBL. If we have time and do some additional survey work on outcrops, nav requirements will depend on time available. Also, if we do outcrop work, we may wish to generate maps at sea. But if we just work at the primary sites (all CORK work), no maps will be needed.

Science Party Supplied Equipment:

  1. Portable winch – “Wheat Plasma Winch” or “OSMO Winch”

This was used on AT15-43 Feb 2009.

Winch with Plasma cable (Plasma winch //C. G. Wheat, co-PI). This tool may be needed for CORK string recovery (recovery with Jason/Medea is preferred). If we use the Plasma winch, will be installed on port side of forward fantail, with sheave extending using hydroboom.


Jason: (It is most important to communicate with Matt Heintz directly and to

refer to the Jason Fact Sheet published on the WHOI website:

And the Jason Specs / User Manual; )

  1. General work description / Brief operation description or comments:

  1. We request that there be at least two (2) of the standard Jason elevators with fixed floatation. As described below, one of these is to be dedicated for use with the UH fluid/microbial sampling systems. The other large elevator will be used for periodic instrument deployment and recovery, as needed.

(2) We request that a small "Alvin" elevator be made available. This is a roughly 1 m x 1 m elevator that was modified during AT18-07, with a hole cut near the center of the grating, for use in calibration of the electromagnetic flowmeter. We wish to repeat that calibration exercise, as described below, and hope that the small "Alvin" elevator can be made available for this purpose. A photograph of this elevator as configured on AT18-07 is provided.

(3) We will be bringing out a mixture of floatation systems of various buoyancy values, for use with deployment and recovery of equipment. How much of this we end up using will depend on configuration of individual systems for deployment and recovery, which will be determined in consultation with Atlantis and Jason personnel.
(4) We request that a supply of Alvin drop weights (or similar) be provided for use with elevator, instrument, and flotation deployment and recovery. We will work through the particulars of the different deployments with shipboard personnel, to keep these operations as simple as possible, but it will be helpful to have ~500-800 lbs of drop weights available for our use.

  1. Number of instruments / samples to recover and their most accurate positions:

  1. Other sampling from Jason

    1. BIO Collection boxes 12”x12”x16”

    2. Jason CTD Bottle

    3. High Temp Probe

    4. Search Sonar

    5. Elevators - how many? YES - 2

e. Push corers

f. High Temp Probe YES

g. Slurp Samplers – Large Multi chamber & Single chamber

h. Scoop Nets

  1. Please give a brief description of the equipment, its intended purpose, the cruise # it was last used on if any and its deployment method.

(1) Communication with CORK pressure loggers using ODI connector, Holes 1027C,

1301A/B, 1362A/B. This connector is same as used with Alvin each year between 2005-2009 and with Jason in 2010-11. RS422hard-switchable to power off

1.5 kg in air, 1.1 kg in water connector will be serviced via pigtails with AWM connector, we will provide will be dummied off when not in use.

(2) CORK flowmeter (currently deployed on 1362B, to be deployed on 1362A)

Dimensions: Inches

Length 47.0

Diameter 6.0

Weight: Pounds

Dry 55

Wet 49
This autonomous, electromagnetic flowmeter system is currently clamped in place on the

wellhead of the CORK in Hole 1362B. A ball valve below the clamp was opened in

Summer 2011, allowing ~65 degC fluid to discharge from the wellhead through the

flowmeter. The flowmeter the rate of flow with time, once per hour. This instrument will

be recovered in Summer 2013.
In addition, we have completed a new version of this tool with IrDA communication

capabilities. Depending on the condition of the old tool after it is recovered, we may (a)

redeploy that tool, or (b) deploy the new tool.
We would like to be able to calibrate the new tool by lowering and raising it on the

hydrowire using a small Alvin elevator that we modified in on AT18-07 for this purpose.

The elevator has a hole cut out in the grating that fits an adapter on the lower end of the

elevator, so that water moves through the flowmeter with minimial restriction as the

elevator is lowered and raised. We will provide photographs of this system, in the hope

that it can be located and made available for AT25-05 as well.

Does the equipment require data or a power interface from the vehicle?

Both flowmeter systems are autonomous, but the newer system allows for IrDA

communication using a receiver to be carried in the Jason basket. For the latter we will

IrDA communication transmit/receive

RS-232, 24 VDC

option to power on/off

Does this equipment require hydraulic inputs from the vehicle? No
(3) Communication with pressure logger in CORK in Hole 1024C

This is a secondary objective, if there is time. To communicate with this system, we will

deploy a Seacon connector having these specifications:
RS232, 4-wire

connection including 9 V power (all hard-switchable to no connection)

4.4 kg in air, 3.4 kg in water

can be plugged into same Jason pigtail as O.D. Blue via AWM-8 connector

Note: if there is a dedicated dive at 1024C, this will be only communication required for

that dive

(4) We may be bringing out an insertion frame for use with the 66-cm Alvin style heat

flow probe. This device is to be deployed using a Jason elevator. The frame is handled

separately from the standard heat flow probe, which is carried in the usual way by Jason

(in basket and/or in holster). A set of drawings of the insertion frame is available here:

We plan to deploy this device on an elevator, then pick up with Jason. The frame will

weigh about 60 lbs in water. Once positioned on the seafloor, the heat flow probe is

inserted from the top of the guide tube, then pushed into the seafloor with the handle that

extends upward from the probe. After collecting data, the probe is pulled out of the

seafloor using the handle.

The heat flow probe is a standard Alvin/Jason heat probe (designed and build by Lane

Abrams), operated using a RS-232 connection with approx. 26 V DC provided by the

vehicle. We will bring two with us, along with associated cables. We will also bring our

own operating software for the probe, and will plan to leave this software with Jason

personnel for use during later expeditions, if desired.
III. Instruments provided/used by UH: Fluid and microbiological sampling

(1) A GeoMICROBE sled will be recovered from 1362B; it was deployed by Jason in

summer of 2011 in AT18-07. The recovery operation will consist of disconnecting the

"Jannasch" connector from the CORK wellhead, moving the sled away from the CORK

and releasing the drop weights. We will not need to communicate with this sled prior to


(2) Short-term Modified GeoMICROBE (MGM) sampling using a decidated Jason

elevator. This should allow us to obtain large volume filtrations while minimizing ROV

time. A large Jason elevator will be configured with essential GeoMICROBE

components (controller, primary pump, some sensors, fluid samplers, batteries). This

sampling system will be deployed and connected to CORK fluid lines via "Jannasch"

connectors for 24-48 hours of near continuous sampling. The system will be recovered

(disconnect, release drop weights) and refit for redeployment. We hope for a minimum of

three (3) deployments of this short-term time-series sampling system (CORK in Hole

1362A: deep bioline, deep stainless steal line, shallow stainless steal line), but will be

prepared for additional deployments if time and opportunity permits (e.g., 1362B

bioline). We will communicate with the MGM via an ODI connector; we will use the same connector and cable system as in past years with JASON. These connectors/cables are described in the accompanying document: UH_Penetrators_AT25-05_wiring.doc
(3) Mobile Pumping System: We will use the MPV for real time sampling from CORKs

in Holes 1362A, 1362B and 1301A. Primary use of MPV will be to rapidly fill large and

medium sized "bag" samplers. Operations will entail connecting MPS to the CORK

fluids lines via either the "Jannasch" (Holes 1362A and 1362B) or "Aeroquip" connectors

(Hole 1301A), using the MPS pump to flush the fluid lines and then fill the bags. Some

in situ filters will be collected (e.g., 1301A). The MPS is then disconnected from the

Physically, the MPS resides in a large milk crate, secured to the right side of the

JASON’s forward science basket. The associated Medium Volume Bag System (MVBS)

resides in the aft science bay; the MPS and MVBS are connected by a continuous run of

0.250” (ID) PVDF tubing. The MVBS consists of two integrated components: the 6-bag

sampler system and the McLane Multisampler.
Electrical connections between the MPS and the JASON and between the MVBS and the

JASON will be as in previous years, described in the accompanying document:

(4) Large Volume Bag Sampler: If the opportunity arises we will secure a LVBS to the

forward Science basket, next to the MPS, as in years past. This will be connected to the

MPS via plastic tubing. This will allow the rapid collection of a large volume of pristine

basement fluids. Procedures are similar to those used for the MPS, described above.

Tools to be deployed and manipulated with Jason. These tools include:
(a) Instruments for pressure monitoring of subseafloor observatories
(b) Electromagnetic flowmeter for use on wellhead experiments
(c) Heat flow insertion frame
(d) Fluid/mbio sampling systems from UH
UH instruments that require through-hull communications and/or power control are

summarized in the table provided.

Ship [Other Requirements][Shipboard Equipment/Nav] :

    1. Science/Ship Operations [Program-Provided Science Tools

    2. Instrument Deployment / Recovery Procedures

    3. Overboarding Equipment (ISM)- Portable winch

    4. Vans – (Jason, Isotope, Chemical)

    5. Hazards [weight, bulk, chemical, pres.]

    6. Night Operations YES

  1. Deck Safety – Safety Shoes ( X ), Experience ( X )

    1. Science personnel have Training/Experience to operate/deploy gear

  1. Lab Safety – PPE ( X ), Lab Training ( X )

  2. Hazardous Material [Notes] Fill out HAZMAT INVENTORY FORM

    1. Chemicals & Compressed Gases

      1. Inventory Form

      2. Spill Kit

      3. Loading and waste removal logistics

    2. Isotope Use [Isotope Use Approval]

  1. Policies: (speed, departure/arrival times, moving aboard, etc

  2. Ship Navigation

  3. Communication (voice, fax, e-mail)

  4. Equipment

    1. Cranes ( )

    2. Oceanographic winches: .681 FO ( X ), Hydro ( ), Trawl ( ), CTD ( X )

    3. Air Tuggers ( X )

    4. Electrical power ( X )

Logistics [Notes]

  1. Shipping gear to and from vessel? Mob July 11 – 12.

Driving gear down? Leaving cars? Wharehouse storage?

2. Demob – July 27 – 28.


  1. Actions departing ship

  2. UNOLS cruise evaluation [Chief Scientist & Master]

  3. Reports to foreign government/State Department [required for work in EEZs] w/in 30 days.

  4. Data delivery [shipboard & Jason]

  5. Data archiving policy:

All data on a WHOI Cruise Data Distribution (which includes all underway data) will, by default be considered publicly available once a copy of it has been delivered to the chief scientist at the end of the cruise. Please review the Cruise Assignment of Data Access Protection

Download 50.69 Kb.

Share with your friends:

The database is protected by copyright © 2020
send message

    Main page