References:
[1] Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J. J., Sandhu, S., ... & Froelicher, V. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. The American journal of cardiology, 64(5), 304-310.
[2] Butler, J., Kalogeropoulos, A., Georgiopoulou, V., Belue, R., Rodondi, N., Garcia, M., ... & Newman, A. B. (2008). Incident heart failure prediction in the elderly: the health ABC heart failure score. Circulation: Heart Failure, 1(2), 125-133.
[3] Förhécz, Z., Gombos, T., Borgulya, G., Pozsonyi, Z., Prohászka, Z., & Jánoskuti, L. (2009). Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. American heart journal, 158(4), 659-666.
[4] Chicco, D., & Jurman, G. (2020). Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC medical informatics and decision making, 20(1), 16.
[5] Ahmad, T., Munir, A., Bhatti, S. H., Aftab, M., & Raza, M. A. (2017). Survival analysis of heart failure patients: A case study. PloS one, 12(7), e0181001.
[6] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
[7] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297
[8] Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14(1), 5-16
[9] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3), 389-422.
[10] Chapelle, O., Haffner, P., & Vapnik, V. N. (1999). Support vector machines for histogram-based image classification. IEEE transactions on Neural Networks, 10(5), 1055-1064.
Share with your friends: |