VASCAT
(Virginia Satellite for Carbon-monoxide Analysis and Tabulation)
-
Michael P. Belcher
|
Ann W. Bergquist
|
Joseph G. Bidwell
|
Kevin D. Earle
|
Scott E. Lennox
|
Daniel Pedraza
|
Christine R. Rogers
|
Matthew C. VanDyke
|
Richard G. Winski
|
August 27, 2002
Christopher D. Hall
Aerospace and Ocean Engineering Department
Virginia Polytechnic Institute and State University
215 Randolph Hall
Blacksburg, VA 24061
cdhall@vt.edu (540) 231-2314 fax (540) 231-9632
Table of Contents
List of Figures iv
List of Tables v
List of Abbreviations vi
List of Symbols vii
Chapter 1: Introduction and Problem Definition 9
1.1 Descriptive scenario 9
1.2 Scope 10
1.3 Needs, alterables, and constraints 10
1.4 Value system design 11
1.5 Summary and conclusions 13
Chapter 2: Satellite Configuration and Components 14
2.1 Configuration 14
2.2 Structure 16
2.2.1 Requirements 16
2.2.2 Launch vehicle selection 17
2.2.3 Bus structure 17
2.2.4 Structure configuration 20
2.2.5 Component layout 21
2.3 ADCS 22
2.3.1 Attitude control architecture 22
2.3.2 Attitude control modes 22
2.3.3 Disturbance torques 23
2.3.4 Hardware 26
2.4 Power 32
2.4.1 Power Requirements 32
2.4.2 Power Generation 33
2.4.3 Energy Storage 35
2.5 Thermal 37
2.6 Communication 42
2.6.1 Uplink 43
2.6.2 Downlink 44
2.6.3 AMSAT 44
2.7 Command and data handling 45
2.8 Summary 45
Chapter 3: Mission Operations 45
3.1 Orbits 45
3.1.1 Coverage 46
3.1.2 Orbit prediction 47
3.1.3 Orbit simulation 47
3.1.4 Orbit characteristics 47
3.1.5 Lifetime 48
3.2 Summary 51
Chapter 4: Cost Analysis 52
Chapter 5: Summary, Conclusions, and Remaining Work 54
References 55
Appendix A: MATLAB Power Code 57
Appendix B: HokieSat Loop Antenna 59
Appendix C: MATLAB Earth Ground Coverage Code 60
Appendix D: MATLAB Disturbance Torque and Attitude Actuator Sizing Code 63
Figure 1: Objective hierarchy chart 12
Figure 2: Internal configuration of HokieSat7 14
Figure 3: External configuration of HokieSat7 15
Figure 4: VASCAT external configuration 16
Figure 5: Illustration of isogrid construction15 20
Figure 6: Ithaco CES sensor head diagram11 26
Figure 7: An isometric diagram of the BEI Systron Donner QRS-11 rate gyro17 27
Figure 8: A three view drawing of the Ithaco IM-103 magnetometer11 28
Figure 9: A cut-away diagram showing the interior of an Ithaco Type A momentum wheel11 30
Figure 10: External configuration diagram of an Ithaco TR30CFR magnetic torque bar11 31
Figure 11: VASCAT power model 35
Figure 12: Cycle life versus DOD17 36
Figure 13: Uplink transceiver5 43
Figure 14: Downlink transmitter5 44
Figure 15: Lifetime as a function of altitude 48
Figure 16: Lifetime as a function of drag coefficient for a 400 km altitude orbit 49
Figure 17: Lifetime as a function of drag coefficient for a 500 km altitude orbit 49
Figure 18: Lifetime as a function of drag area for a 400 km altitude orbit 50
Figure 19: Lifetime as a function of drag area for a 500 km altitude orbit 50
Figure 20: Lifetime as a function of orbit inclination 51
Figure 21: Loop antenna assembly from HokieSat drawing package 59
Figure 22: Copper tube loop from HokieSat drawing package 59
List of Tables
Table 1: List of needs, alterables, and constraints for host satellite design 11
Table 2: List of objectives and their associated subsystems 12
Table 3: Mass budget by subsystem 17
Table 4: Structural requirements16 18
Table 5: Limiting loads on structure during launch 19
Table 6: Trade study of component mounting techniques 22
Table 7: MicroMAPS imposed attitude requirements19 23
Table 8: Estimated structural properties of the VASCAT 25
Table 9: Estimated orbital properties of the VASCAT 26
Table 10: Estimated disturbance torques 26
Table 11: Properties of the Ithaco CES11 27
Table 12: Properties of the Valley Forge Composite Technologies Sun Sensor18 28
Table 13: Properties of the BEI Systron Donner QRS-11 rate gyro17 29
Table 14: Properties of the Ithaco IM-103 magnetometer11 29
Table 15: VASCAT orbital and environmental properties 30
Table 16: Properties of the Ithaco TW-4A12 momentum wheel11 31
Table 17: Properties of the Ithaco TR30CFR magnetic torque bar11 32
Table 18: Component power requirements 33
Table 19: Daylight and eclipse power budget 34
Table 20: Design parameters for preliminary VASCAT thermal analysis 38
Table 21: VASCAT Temperature Limits (°C) 39
Table 22: Component internal power dissipations 40
Table 23: Environmental fluxes in space (W/m2) 41
Table 24: Surface properties 41
Table 25: Temperatures of the VASCAT components 42
Table 26: Uplink receiver specifications5 44
Table 27: Downlink transmitter specifications5 45
Table 28: The VASCAT cost estimate using PECM20 54
List of Abbreviations
ADCS
|
Attitude determination and control system
|
AMSAT
|
Amateur Satellite
|
CER
|
Cost estimation relationships
|
CES
|
Conical Earth sensor
|
DOD
|
Depth of discharge
|
ECA
|
Earth center angle
|
GASCAN
|
Getaway special canister
|
GSFC
|
Goddard Space Flight Center
|
ICD
|
Interface control document
|
IR
|
Infrared
|
LaRC
|
Langley Research Center
|
LEO
|
Low-Earth orbit
|
MAPS
|
Measurement of Air Pollution from Satellites
|
MAPS
|
MicroMAPS Gas Filter Correlation Radiometer
|
MTB
|
Magnetic torque bar
|
MOE
|
Measure of effectiveness
|
NASA
|
National Aeronautics and Space Administration
|
NiCd
|
Nickel cadmium
|
NiMH
|
Nickel metal-hydride
|
PECM
|
Parametric cost estimation method
|
RTG
|
Radio-isotope thermoelectric generator
|
SHELS
|
Shuttle Hitchhiker Experiment Launch System
|
SINDA
|
Systems Integrated Numerical Differential Analyzer
|
STK
|
Satellite Tool Kit
|
TCS
|
Thermal control system
|
UHF
|
Ultra-high frequency
|
VASCAT
|
Virginia Satellite for Carbon-monoxide Analysis and Tabulation
|
Share with your friends: |