Paper 2000 Question: 1 (a) Al-Beruni



Download 0.98 Mb.
Page1/30
Date30.04.2017
Size0.98 Mb.
#16918
  1   2   3   4   5   6   7   8   9   ...   30


PAPER 2000


Question:1

(a) Al-Beruni

Al-Biruni (973-1050?), Arab scientist, who wrote on a wide variety of scientific subjects. His most important contributions as a scientist were his keen observations of natural phenomena, rather than theories. Sometimes called “the master,” he became one of the best-known Muslim scientists of his time.

Al-Biruni was born in what is now Uzbekistan. At the time, it was part of a vast region called Persia. Al-Biruni's records show that he wrote 113 works, but most of them have been lost. His subjects included astronomy, astrology, chronology, geography, mathematics, mechanics, medicine, pharmacology, meteorology, mineralogy, history, religion, philosophy, literature, and magic. One or more books on most of these subjects have survived. Al-Biruni's important works include Canon, his most comprehensive study of astronomy; Densities, which records specific gravities of various metals, liquids, and gems; Astrolabe, one of the most valuable descriptions of that astronomical instrument; Pharmacology, which contains more than 700 descriptions of drugs; and India, his best-known work, in which he used his knowledge of Sanskrit to describe Indian customs, languages, science, and geography.



(b) Water Pollution

I INTRODUCTION
Water Pollution, contamination of streams, lakes, underground water, bays, or oceans by substances harmful to living things. Water is necessary to life on earth. All organisms contain it; some live in it; some drink it. Plants and animals require water that is moderately pure, and they cannot survive if their water is loaded with toxic chemicals or harmful microorganisms. If severe, water pollution can kill large numbers of fish, birds, and other animals, in some cases killing all members of a species in an affected area. Pollution makes streams, lakes, and coastal waters unpleasant to look at, to smell, and to swim in. Fish and shellfish harvested from polluted waters may be unsafe to eat. People who ingest polluted water can become ill, and, with prolonged exposure, may develop cancers or bear children with birth defects.

II MAJOR TYPES OF POLLUTANTS
The major water pollutants are chemical, biological, or physical materials that degrade water quality. Pollutants can be classed into eight categories, each of which presents its own set of hazards.

A Petroleum Products
Oil and chemicals derived from oil are used for fuel, lubrication, plastics manufacturing, and many other purposes. These petroleum products get into water mainly by means of accidental spills from ships, tanker trucks, pipelines, and leaky underground storage tanks. Many petroleum products are poisonous if ingested by animals, and spilled oil damages the feathers of birds or the fur of animals, often causing death. In addition, spilled oil may be contaminated with other harmful substances, such as polychlorinated biphenyls (PCBs).

B Pesticides and Herbicides
Chemicals used to kill unwanted animals and plants, for instance on farms or in suburban yards, may be collected by rainwater runoff and carried into streams, especially if these substances are applied too lavishly. Some of these chemicals are biodegradable and quickly decay into harmless or less harmful forms, while others are nonbiodegradable and remain dangerous for a long time.

When animals consume plants that have been treated with certain nonbiodegradable chemicals, such as chlordane and dichlorodiphenyltrichloroethane (DDT), these chemicals are absorbed into the tissues or organs of the animals. When other animals feed on these contaminated animals, the chemicals are passed up the food chain. With each step up the food chain, the concentration of the pollutant increases. In one study, DDT levels in ospreys (a family of fish-eating birds) were found to be 10 to 50 times higher than in the fish that they ate, 600 times the level in the plankton that the fish ate, and 10 million times higher than in the water. Animals at the top of food chains may, as a result of these chemical concentrations, suffer cancers, reproductive problems, and death. 


Many drinking water supplies are contaminated with pesticides from widespread agricultural use. More than 14 million Americans drink water contaminated with pesticides, and the Environmental Protection Agency (EPA) estimates that 10 percent of wells contain pesticides. Nitrates, a pollutant often derived from fertilizer runoff, can cause methemoglobinemia in infants, a potentially lethal form of anemia that is also called blue baby syndrome.

C Heavy Metals
Heavy metals, such as copper, lead, mercury, and selenium, get into water from many sources, including industries, automobile exhaust, mines, and even natural soil. Like pesticides, heavy metals become more concentrated as animals feed on plants and are consumed in turn by other animals. When they reach high levels in the body, heavy metals can be immediately poisonous, or can result in long-term health problems similar to those caused by pesticides and herbicides. For example, cadmium in fertilizer derived from sewage sludge can be absorbed by crops. If these crops are eaten by humans in sufficient amounts, the metal can cause diarrhea and, over time, liver and kidney damage. Lead can get into water from lead pipes and solder in older water systems; children exposed to lead in water can suffer mental retardation.

D Hazardous Wastes
Hazardous wastes are chemical wastes that are either toxic (poisonous), reactive (capable of producing explosive or toxic gases), corrosive (capable of corroding steel), or ignitable (flammable). If improperly treated or stored, hazardous wastes can pollute water supplies. In 1969 the Cuyahoga River in Cleveland, Ohio, was so polluted with hazardous wastes that it caught fire and burned. PCBs, a class of chemicals once widely used in electrical equipment such as transformers, can get into the environment through oil spills and can reach toxic levels as organisms eat one another.

E Excess Organic Matter
Fertilizers and other nutrients used to promote plant growth on farms and in gardens may find their way into water. At first, these nutrients encourage the growth of plants and algae in water. However, when the plant matter and algae die and settle underwater, microorganisms decompose them. In the process of decomposition, these microorganisms consume oxygen that is dissolved in the water. Oxygen levels in the water may drop to such dangerously low levels that oxygen-dependent animals in the water, such as fish, die. This process of depleting oxygen to deadly levels is called eutrophication.

F Sediment
Sediment, soil particles carried to a streambed, lake, or ocean, can also be a pollutant if it is present in large enough amounts. Soil erosion produced by the removal of soil-trapping trees near waterways, or carried by rainwater and floodwater from croplands, strip mines, and roads, can damage a stream or lake by introducing too much nutrient matter. This leads to eutrophication. Sedimentation can also cover streambed gravel in which many fish, such as salmon and trout, lay their eggs.

G Infectious Organisms
A 1994 study by the Centers for Disease Control and Prevention (CDC) estimated that about 900,000 people get sick annually in the United States because of organisms in their drinking water, and around 900 people die. Many disease-causing organisms that are present in small numbers in most natural waters are considered pollutants when found in drinking water. Such parasites as Giardia lamblia and Cryptosporidium parvum occasionally turn up in urban water supplies. These parasites can cause illness, especially in people who are very old or very young, and in people who are already suffering from other diseases. In 1993 an outbreak of Cryptosporidium in the water supply of Milwaukee, Wisconsin, sickened more than 400,000 people and killed more than 100.

H Thermal Pollution
Water is often drawn from rivers, lakes, or the ocean for use as a coolant in factories and power plants. The water is usually returned to the source warmer than when it was taken. Even small temperature changes in a body of water can drive away the fish and other species that were originally present, and attract other species in place of them. Thermal pollution can accelerate biological processes in plants and animals or deplete oxygen levels in water. The result may be fish and other wildlife deaths near the discharge source. Thermal pollution can also be caused by the removal of trees and vegetation that shade and cool streams.

III SOURCES OF WATER POLLUTANTS
Water pollutants result from many human activities. Pollutants from industrial sources may pour out from the outfall pipes of factories or may leak from pipelines and underground storage tanks. Polluted water may flow from mines where the water has leached through mineral-rich rocks or has been contaminated by the chemicals used in processing the ores. Cities and other residential communities contribute mostly sewage, with traces of household chemicals mixed in. Sometimes industries discharge pollutants into city sewers, increasing the variety of pollutants in municipal areas. Pollutants from such agricultural sources as farms, pastures, feedlots, and ranches contribute animal wastes, agricultural chemicals, and sediment from erosion.

The oceans, vast as they are, are not invulnerable to pollution. Pollutants reach the sea from adjacent shorelines, from ships, and from offshore oil platforms. Sewage and food waste discarded from ships on the open sea do little harm, but plastics thrown overboard can kill birds or marine animals by entangling them, choking them, or blocking their digestive tracts if swallowed.

Oil spills often occur through accidents, such as the wrecks of the tanker Amoco Cadiz off the French coast in 1978 and the Exxon Valdez in Alaska in 1992. Routine and deliberate discharges, when tanks are flushed out with seawater, also add a lot of oil to the oceans. Offshore oil platforms also produce spills: The second largest oil spill on record was in the Gulf of Mexico in 1979 when the Ixtoc 1 well spilled 530 million liters (140 million gallons). The largest oil spill ever was the result of an act of war. During the Gulf War of 1991, Iraqi forces destroyed eight tankers and onshore terminals in Kuwait, releasing a record 910 million liters (240 million gallons). An oil spill has its worst effects when the oil slick encounters a shoreline. Oil in coastal waters kills tidepool life and harms birds and marine mammals by causing feathers and fur to lose their natural waterproof quality, which causes the animals to drown or die of cold. Additionally, these animals can become sick or poisoned when they swallow the oil while preening (grooming their feathers or fur).

Water pollution can also be caused by other types of pollution. For example, sulfur dioxide from a power plant’s chimney begins as air pollution. The polluted air mixes with atmospheric moisture to produce airborne sulfuric acid, which falls to the earth as acid rain. In turn, the acid rain can be carried into a stream or lake, becoming a form of water pollution that can harm or even eliminate wildlife. Similarly, the garbage in a landfill can create water pollution if rainwater percolating through the garbage absorbs toxins before it sinks into the soil and contaminates the underlying groundwater (water that is naturally stored underground in beds of gravel and sand, called aquifers).

Pollution may reach natural waters at spots we can easily identify, known as point sources, such as waste pipes or mine shafts. Nonpoint sources are more difficult to recognize. Pollutants from these sources may appear a little at a time from large areas, carried along by rainfall or snowmelt. For instance, the small oil leaks from automobiles that produce discolored spots on the asphalt of parking lots become nonpoint sources of water pollution when rain carries the oil into local waters. Most agricultural pollution is nonpoint since it typically originates from many fields.

IV CONTROLS
In the United States, the serious campaign against water pollution began in 1972, when Congress passed the Clean Water Act. This law initiated a national goal to end all pollution discharges into surface waters, such as lakes, rivers, streams, wetlands, and coastal waters. The law required those who discharge pollutants into waterways to apply for federal permits and to be responsible for reducing the amount of pollution over time. The law also authorized generous federal grants to help states build water treatment plants that remove pollutants, principally sewage, from wastewater before it is discharged.

Since the passage of the Clean Water Act in 1972, most of the obvious point sources of pollution in the United States have been substantially cleaned up. Municipal sewage plants in many areas are now yielding water so clean that it can be used again. Industries are treating their waste and also changing their manufacturing processes so that less waste is produced. As a result, surface waters are far cleaner than they were in 1972. In 1990 a survey of rivers and streams found that three-quarters of these waters were clean enough for swimming and fishing. Cleaning up the remainder of these rivers and streams will require tackling the more difficult problems of diffuse, nonpoint source pollution.

Congress first took up the nonpoint source problem in 1987, requiring the states to develop programs to combat this kind of pollution. Since interception and treatment of nonpoint pollution is very difficult, the prime strategy is to prevent it.

In urban areas, one obvious sign of the campaign against nonpoint pollution is the presence of stenciled notices often seen beside storm drains: Drains To Bay, Drains To Creek, or Drains To Lake. These signs discourage people from dumping contaminants, such as used engine oil, down grates because the material will likely pollute nearby waterways. Householders are urged to be sparing in their use of garden pesticides and fertilizers in order to reduce contaminated runoff and eutrophication. At construction sites, builders are required to fight soil erosion by laying down tarps, building sediment traps, and seeding grasses.

In the countryside, efforts are underway to reduce pollution from agricultural wastes, fertilizers, and pesticides, and from erosion caused by logging and farming. Farmers and foresters are encouraged to protect streams by leaving streamside trees and vegetation undisturbed; this practice stabilizes banks and traps sediment coming down the slope, preventing sediment buildup in water. Hillside fields are commonly plowed on the contour of the land, rather than up and down the incline, to reduce erosion and to discourage the formation of gullies. Cows are kept away from streamsides and housed in barns where their waste can be gathered and treated. Increasingly, governments are protecting wetlands, which are valuable pollution traps because their plants absorb excess nutrients and their fine sediments absorb other pollutants. In some places, lost wetlands are being restored. Despite these steps, a great deal remains to be done.
In the United States, the EPA is in overall charge of antipollution efforts. The EPA sets standards, approves state control plans, and steps in (if necessary) to enforce its own rules. Under the Safe Drinking Water Act (SDWA), passed in 1974 and amended in 1986 and 1996, the EPA sets standards for drinking water. Among other provisions, the SWDA requires that all water drawn from surface water supplies must be filtered to remove Cryptosporidium bacteria by the year 2000. The law also requires that states map the watersheds from which drinking water comes and identify sources of pollution within those watersheds. While America’s drinking water is among the safest in the world, and has been improving since passage of the SDWA, many water utilities that serve millions of Americans provide tap water that fails to meet the EPA standards.

The EPA has equivalents in many countries, although details of responsibilities vary. For instance, the federal governments may have a larger role in pollution control, as in France, or more of this responsibility may be shifted to the state and provincial governments, as in Canada. Because many rivers, lakes, and ocean shorelines are shared by several nations, many international treaties also address water pollution. For example, the governments of Canada and the United States have negotiated at least nine treaties or agreements, starting with the Canada-U.S. Boundary Waters Treaty of 1909, governing water pollution of the many rivers and lakes that flow along or across their common border.


Several major treaties deal with oceanic pollution, including the 1972 Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter and the 1973 International Convention for the Prevention of Pollution from Ships (known as MARPOL). International controls and enforcement, however, are generally weak.

Contributed By:


John Hart
Microsoft ® Encarta ® 2006. © 1993-2005 Microsoft Corporation. All rights reserved.

(c) Semi Conductors

I INTRODUCTION
Semiconductor, solid or liquid material, able to conduct electricity at room temperature more readily than an insulator, but less easily than a metal. Electrical conductivity, which is the ability to conduct electrical current under the application of a voltage, has one of the widest ranges of values of any physical property of matter. Such metals as copper, silver, and aluminum are excellent conductors, but such insulators as diamond and glass are very poor conductors (see Conductor, electrical; Insulation; Metals). At low temperatures, pure semiconductors behave like insulators. Under higher temperatures or light or with the addition of impurities, however, the conductivity of semiconductors can be increased dramatically, reaching levels that may approach those of metals. The physical properties of semiconductors are studied in solid-state physics. See Physics.

II CONDUCTION ELECTRONS AND HOLES
The common semiconductors include chemical elements and compounds such as silicon, germanium; selenium, gallium arsenide, zinc selenide, and lead telluride. The increase in conductivity with temperature, light, or impurities arises from an increase in the number of conduction electrons, which are the carriers of the electrical current See Electricity; Electron. In a pure, or intrinsic, semiconductor such as silicon, the valence electrons, or outer electrons, of an atom are paired and shared between atoms to make a covalent bond that holds the crystal together See Chemical Reaction; see Crystal). These valence electrons are not free to carry electrical current. To produce conduction electrons, temperature or light is used to excite the valence electrons out of their bonds, leaving them free to conduct current. Deficiencies, or “holes,” are left behind that contribute to the flow of electricity. (These holes are said to be carriers of positive electricity.) This is the physical origin of the increase in the electrical conductivity of semiconductors with temperature. The energy required to excite the electron and hole is called the energy gap.

III DOPING

Another method to produce free carriers of electricity is to add impurities to, or to “dope,” the semiconductor. The difference in the number of valence electrons between the doping material, or dopant (either donors or acceptors of electrons), and host gives rise to negative (n-type) or positive (p-type) carriers of electricity. This concept is illustrated in the accompanying diagram of a doped silicon (Si) crystal. Each silicon atom has four valence electrons (represented by dots); two are required to form a covalent bond. In n- type silicon, atoms such as phosphorus (P) with five valence electrons replace some silicon and provide extra negative electrons. In p-type silicon, atoms with three valence electrons such as aluminum (Al) lead to a deficiency of electrons, or to holes, which act as positive electrons. The extra electrons or holes can conduct electricity. 

When p-type and n-type semiconductor regions are adjacent to each other, they form a semiconductor diode, and the region of contact is called a p-n junction. (A diode is a two-terminal device that has a high resistance to electric current in one direction but a low resistance in the other direction.) The conductance properties of the p-n junction depend on the direction of the voltage, which can, in turn, be used to control the electrical nature of the device. Series of such junctions are used to make transistors and other semiconductor devices such as solar cells, p-n junction lasers, rectifiers, and many others. 

Semiconductor devices have many varied applications in electrical engineering. Recent engineering developments have yielded small semiconductor chips containing hundreds of thousands of transistors. These chips have made possible great miniaturization of electronic devices. More efficient use of such chips has been developed through what is called complementary metal-oxide semiconductor circuitry, or CMOS, which consists of pairs of p- and n-channel transistors controlled by a single circuit. In addition, extremely small devices are being made using the technique of molecular-beam epitaxy.

Contributed By:


Marvin L. Cohen
Microsoft ® Encarta ® 2006. © 1993-2005 Microsoft Corporation. All rights reserved.

Question:2 Movements of Earth

Earth (planet)

I INTRODUCTION
Earth (planet), one of nine planets in the solar system, the only planet known to harbor life, and the “home” of human beings. From space Earth resembles a big blue marble with swirling white clouds floating above blue oceans. About 71 percent of Earth’s surface is covered by water, which is essential to life. The rest is land, mostly in the form of continents that rise above the oceans.

Earth’s surface is surrounded by a layer of gases known as the atmosphere, which extends upward from the surface, slowly thinning out into space. Below the surface is a hot interior of rocky material and two core layers composed of the metals nickel and iron in solid and liquid form.

Unlike the other planets, Earth has a unique set of characteristics ideally suited to supporting life as we know it. It is neither too hot, like Mercury, the closest planet to the Sun, nor too cold, like distant Mars and the even more distant outer planets—Jupiter, Saturn, Uranus, Neptune, and tiny Pluto. Earth’s atmosphere includes just the right amount of gases that trap heat from the Sun, resulting in a moderate climate suitable for water to exist in liquid form. The atmosphere also helps block radiation from the Sun that would be harmful to life. Earth’s atmosphere distinguishes it from the planet Venus, which is otherwise much like Earth. Venus is about the same size and mass as Earth and is also neither too near nor too far from the Sun. But because Venus has too much heat-trapping carbon dioxide in its atmosphere, its surface is extremely hot—462°C (864°F)—hot enough to melt lead and too hot for life to exist.

Although Earth is the only planet known to have life, scientists do not rule out the possibility that life may once have existed on other planets or their moons, or may exist today in primitive form. Mars, for example, has many features that resemble river channels, indicating that liquid water once flowed on its surface. If so, life may also have evolved there, and evidence for it may one day be found in fossil form. Water still exists on Mars, but it is frozen in polar ice caps, in permafrost, and possibly in rocks below the surface.

For thousands of years, human beings could only wonder about Earth and the other observable planets in the solar system. Many early ideas—for example, that the Earth was a sphere and that it traveled around the Sun—were based on brilliant reasoning. However, it was only with the development of the scientific method and scientific instruments, especially in the 18th and 19th centuries, that humans began to gather data that could be used to verify theories about Earth and the rest of the solar system. By studying fossils found in rock layers, for example, scientists realized that the Earth was much older than previously believed. And with the use of telescopes, new planets such as Uranus, Neptune, and Pluto were discovered.

In the second half of the 20th century, more advances in the study of Earth and the solar system occurred due to the development of rockets that could send spacecraft beyond Earth. Human beings were able to study and observe Earth from space with satellites equipped with scientific instruments. Astronauts landed on the Moon and gathered ancient rocks that revealed much about the early solar system. During this remarkable advancement in human history, humans also sent unmanned spacecraft to the other planets and their moons. Spacecraft have now visited all of the planets except Pluto. The study of other planets and moons has provided new insights about Earth, just as the study of the Sun and other stars like it has helped shape new theories about how Earth and the rest of the solar system formed.

As a result of this recent space exploration, we now know that Earth is one of the most geologically active of all the planets and moons in the solar system. Earth is constantly changing. Over long periods of time land is built up and worn away, oceans are formed and re-formed, and continents move around, break up, and merge.

Life itself contributes to changes on Earth, especially in the way living things can alter Earth’s atmosphere. For example, Earth at one time had the same amount of carbon dioxide in its atmosphere as Venus now has, but early forms of life helped remove this carbon dioxide over millions of years. These life forms also added oxygen to Earth’s atmosphere and made it possible for animal life to evolve on land.

A variety of scientific fields have broadened our knowledge about Earth, including biogeography, climatology, geology, geophysics, hydrology, meteorology, oceanography, and zoogeography. Collectively, these fields are known as Earth science. By studying Earth’s atmosphere, its surface, and its interior and by studying the Sun and the rest of the solar system, scientists have learned much about how Earth came into existence, how it changed, and why it continues to change.



Download 0.98 Mb.

Share with your friends:
  1   2   3   4   5   6   7   8   9   ...   30




The database is protected by copyright ©ininet.org 2025
send message

    Main page