Prelab questions



Download 219.54 Kb.
Page1/2
Date31.03.2018
Size219.54 Kb.
#43983
  1   2
Ecosystem lab: Biological magnification of DDT at each trophic level Name: _______________

Date: _________________

Period: _______________

Prelab questions

Write definitions of the following terms.
Food chain:
Producer:
Consumer:
Autotroph:
Heterotroph:
Introduction

DDT, a powerful insecticide, was widely used in the mid 1900s in the United States, but its harmful effects on the environment made people stop using it in 1972. DDT remained in organisms’ bodies without being broken down. Large carnivorous birds especially were vulnerable to DDT and laid eggs with thin shells because of the effects of DDT (Solomon, Berg, and Martin, 2008).

A food chain shows “energy flow in an ecosystem” (Solomon, Berg, and Martin, 2008, p. G-17). In other words, it shows which organism consumes which organism and which organism decomposes which organism in a linear way. A food chain usually has producers, consumers of different levels, and decomposers. Producers are usually autotrophs and use photosynthesis to produce energy. Consumers feed on producers or other consumers and are heterotrophs. A trophic level is each level or step of an organism in terms of its role (producers, consumers, secondary consumers, etc.) in a food web (Solomon, Berg, and Martin, 2008). You will be given the data of DDT concentrations of organisms at each trophic level in the same food chain. Your job is to draw a graph based on the data and analyze the results.

Hypothesis

Will the DDT concentration increase or decrease at each trophic level of a food chain? (In other words, will consumers have more DDT concentration than producers?)

______________________________________________________________________________________________________________________________________________________________________________

Objectives

Students will be able to write a hypothesis about the amount of DDT concentrations within a higher trophic level.

Students will be able to check whether their own hypothesis was correct or not using the results of the data.

Students will be able to assign each organism’s role in terms of a trophic level.

Students will be able to draw a food chain using the relationship between organisms.

Students will be able to graph the amount of DDT concentration at each trophic level using the data given.

Students will be able to explain why the DDT amount changes as the trophic level changes.

Materials

Graphing paper

Pencils

Lab handouts
Safety

NA

Procedures



In a study by Woodwell, Wurster, and Isaacson (1967), scientists measured DDT residues (DDT that remains in an organism’s body) in different organisms at different trophic levels. This study was done in Long Island, New York. They used gas chromatograph to measure the amount of DDT in thirty-nine plants and animals in the area. (Table 1 shows the data of five organisms that are in the same food chain.)

Observation/data

Table 1. DDT concentrations in samples

Sample

Amount of DDT residues (ppm) in tissue

Plankton

0.04 ppm

Shrimp

0.16 ppm

Atlantic needle fish

2.08 ppm

Ring-billed gull

    1. ppm



  1. Draw arrows between the pictures of organisms below to create a food chain. Label each organism with a proper trophic level (i.e. producers and consumers; herbivores are primary consumers, and carnivores are secondary or tertiary consumers. Animals that eat secondary consumers are tertiary consumers.)

Plankton:

Shrimp:

Atlantic needle fish:


Download 219.54 Kb.

Share with your friends:
  1   2




The database is protected by copyright ©ininet.org 2025
send message

    Main page