Information taken from Wikipedia and Books by Stephen and Lucy Hawking


What is a planet? How many planets are there kin our Solar System?



Download 2.22 Mb.
Page4/14
Date31.03.2018
Size2.22 Mb.
#45190
1   2   3   4   5   6   7   8   9   ...   14
What is a planet? How many planets are there kin our Solar System?
Most of us grew up with the conventional definition of a planet as a body that orbits a star, shines by reflecting the star's light and is larger than an asteroid. Although the definition may not have been very precise, it clearly categorized the bodies we knew at the time. In the 1990s, however, a remarkable series of discoveries made it untenable. Beyond the orbit of Neptune, astronomers found hundreds of icy worlds, some quite large, occupying a doughnut-shaped region called the Kuiper belt. Around scores of other stars, they found other planets, many of whose orbits look nothing like those in our solar system. They discovered brown dwarfs, which blur the distinction between planet and star. And they found planetlike objects drifting alone in the darkness of interstellar space.
These findings ignited a debate about what a planet really is and led to the decision last August by the International Astronomical Union (IAU), astronomers' main professional society, to define a planet as an object that orbits a star, is large enough to have settled into a round shape and, crucially, "has cleared the neighborhood around its orbit." Controversially, the new definition removes Pluto from the list of planets. Some astronomers said they would refuse to use it and organized a protest petition.
There are 8 planets – Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune.

What are dwarf planets? How many dwarf planets are there in our Solar System?
A dwarf planet is a planetary-mass object that is neither a planet nor a satellite. More explicitly, the International Astronomical Union (IAU) defines a dwarf planet as a celestial body in direct orbit of the Sun that is massive enough for its shape to be controlled by gravitation, but that unlike a planet has not cleared its orbital region of other objects.
There are 5 dwarf planets in our Solar System – Pluto, Haumea, Makemake, Eris and Ceres. Charon is called a dwarf planet by many of the scientists but the IAU has not recognized it as a dwarf planet.
Sedna, Orcus, Quaoar, 2007 OR 10 are heavenly bodies which can be recognized as dwarf planets.

Mercury

Mercury is the innermost planet in the Solar System. It is also the smallest, and its orbit is the most eccentric (that is, the least perfectly circular) of the eight planets.

 

It orbits the Sun once in about 88 Earth days, completing three rotations about its axis for every two orbits. The planet is named after the Roman god Mercury, the messenger to the gods. Mercury's surface is heavily cratered and similar in appearance to Earth's Moon, indicating that it has been geologically inactive for billions of years. Due to its near lack of an atmosphere to retain heat, Mercury's surface experiences the steepest temperature gradient of all the planets, ranging from a very cold 100 K at night to a very hot 700 K during the day. Mercury's axis has the smallest tilt of any of the Solar System's planets, but Mercury's orbital eccentricity is the largest. The seasons on the planet's surface are caused by the variation of its distance from the Sun rather than by the axial tilt, which is the main cause of seasons on Earth and other planets. At perihelion, the intensity of sunlight on Mercury's surface is more than twice the intensity at aphelion. Because the seasons of the planet are produced by the orbital eccentricity instead of the axial tilt, the season does not differ between its two hemispheres.



Because Mercury's orbit lies within Earth's orbit (as does Venus's), it can appear in Earth's sky either as a morning star or an evening star. While Mercury can appear as a very bright object when viewed from Earth, its proximity to the Sun makes it more difficult to see than Venus. Mercury is one of four terrestrial planets in the Solar System, and is a rocky body like the Earth. It is the smallest planet in the Solar System, with an equatorial radius of 2,439.7 km. Mercury is even smaller—albeit more massive—than the largest natural satellites in the Solar System, Ganymede and Titan. Mercury consists of approximately 70% metallic and 30% silicate material. Mercury's density is the second highest in the Solar System at 5.427 g/cm, only slightly less than Earth's density of 5.515 g/cm. If the effect of gravitational compression were to be factored out, the materials of which Mercury is made would be denser, with an uncompressed density of 5.3 g/cm versus Earth's 4.4 g/cm. Mercury is the nearest planet to the sun. It is the second hottest planet in the Solar System after its nearest neighbour – Venus.

Venus

Venus is the second planet from the Sun, orbiting it every 224.7 Earth days. The planet is named after the Roman goddess of love and beauty. After the Moon, it is the brightest natural object in the night sky, reaching an apparent magnitude of −4.6, bright enough to cast shadows. Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°. Venus reaches its maximum brightness shortly before sunrise or shortly after sunset, for which reason it has been referred to by ancient cultures as the Morning Star or Evening Star.


Venus is classified as a terrestrial planet and is sometimes called Earth's "sister planet" owing to their similar size, gravity, and bulk composition (Venus is both the closest planet to Earth and the planet closest in size to Earth). However, it has been shown to be very different from Earth in other respects. Venus is shrouded by an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. It has the densest atmosphere of the four terrestrial planets, consisting mostly of carbon dioxide. The atmospheric pressure at the planet's surface is 92 times that of Earth's. With a mean surface temperature of 735 K (462 °C; 863 °F), Venus is by far the hottest planet in the Solar System. It has no carbon cycle to lock carbon back into rocks and surface features, nor does it seem to have any organic life to absorb it in biomass. Venus may have possessed oceans in the past, but these would have vaporized as the temperature rose due to the runaway greenhouse effect. The water has most probably photodissociated, and, because of the lack of a planetary magnetic field, the free hydrogen has been swept into interplanetary space by the solar wind. Venus's surface is a dry desertscape interspersed with slab-like rocks and periodically refreshed by volcanism.
Venus is one of the four solar terrestrial planets, meaning that, like the Earth, it is a rocky body. In size and mass, it is similar to the Earth, and is often described as Earth's "sister" or "twin". The diameter of Venus is 12,092 km (only 650 km less than the Earth's) and its mass is 81.5% of the Earth's. Conditions on the Venusian surface differ radically from those on Earth, owing to its dense carbon dioxide atmosphere. The mass of the atmosphere of Venus is 96.5% carbon dioxide, with most of the remaining 3.5% being nitrogen. The Venusian surface was a subject of speculation until some of its secrets were revealed by planetary science in the 20th century. It was finally mapped in detail by Project Magellan in 1990–91. The ground shows evidence of extensive volcanism, and the sulfur in the atmosphere may indicate there have been some recent eruptions.About 80% of the Venusian surface is covered by smooth, volcanic plains, consisting of 70% plains with wrinkle ridges and 10% smooth or lobate plains.

Venus


Earth
Earth is the third planet from the Sun, and eight planets in the Solar System. It is also the largest of the Solar System's four terrestrial planets. It is sometimes referred to as the world, the Blue Planet, or by its Latin name, Terra. Earth formed approximately 4.54 billion years ago, and life appeared on its surface within one billion years. Earth's biosphere then significantly altered the atmospheric and other basic physical conditions, which enabled the proliferation of organisms as well as the formation of the ozone layer, which together with Earth's magnetic field blocked harmful solar radiation, and permitted formerly ocean-confined life to move safely to land. The physical properties of the Earth, as well as its geological history and orbit, have allowed life to persist. Estimates on how much longer the planet will be able to continue to support life range from 500 million years (myr), to as long as 2.3 billion years Earth's lithosphere is divided into several rigid segments, or tectonic plates, that migrate across the surface over periods of many millions of years. About 71% of the surface is covered by salt water oceans, with the remainder consisting of continents and islands which together have many lakes and other sources of water that contribute to the hydrosphere. Earth's poles are mostly covered with ice that is the solid ice of the Antarctic ice sheet and the sea ice that is the polar ice packs. The planet's interior remains active, with a solid iron inner core, a liquid outer core that generates the magnetic field, and a thick layer of relatively solid Earth gravitationally interacts with other objects in space, especially the Sun and the Moon. During one orbit around the sun, the Earth rotates about its own axis 366.26 times, creating 365.26 solar days, or one sidereal. The Earth's axis of rotation is tilted 23.4° away from the perpendicular of its orbital plane, producing seasonal variations on the planet's surface with a period of one tropical year (365.24 solar days). The Moon is Earth's only natural satellite. It began orbiting the Earth about4.53 billion years ago. The Moon's gravitational interaction with Earth stimulates ocean tides, stabilizes the axial tilt, and gradually slows the planet's rotation.
The planet is home to millions of species, including humans. Both the mineral resources of the planet and the products of the biosphere contribute resources that are used to support a global human population. The Earth's terrain varies greatly from place to place. About 70.8% of the surface is covered by water, with much of the continental sea level. This equates to 361.132 million km2 (139.43 million sq mi). The submerged surface has mountainous features, including a globe- spanning mid-ocean ridgesystem, as well as undersea volcanoes, oceanic trenches, submarine canyons, oceanic plateaus and abyssal plains. The remaining 29.2% (148.94 million km2, or 57.51 million sq mi) not covered by water consists of mountains, deserts, plains, plateaus, and other geomorphologies. The planetary surface undergoes reshaping over geological time periods due to tectonics and erosion. The surface features built up or deformed through plate tectonics are subject to steady weathering from precipitation, thermal cycles, and chemical effects. Glaciation, coastal erosion, the build-up of coral reefs, and large meteorite impacts also act to reshape the landscape.
The continental crust consists of lower density material such as the igneous rocks granite andandesite. Less common is basalt, a denser volcanic rock that is the primary constituent of the ocean floors. Sedimentary rock is formed from the accumulation of sediment that becomes compacted together. Nearly 75% of the continental surfaces are covered by sedimentary rocks, although they form only about 5% of the crust. The third form of rock material found on Earth is metamorphic rock, which is created from the transformation of pre-existing rock types through high pressures, high temperatures, or both.
The most abundant silicate minerals on the Earth's surface include quartz, the feldspars, amphibole, minerals include calcite(found in limestone) and dolomite. The pedosphere is the outermost layer of the Earth that is soil and subject to soil formation processes. It exists at the interface of the lithosphere, atmosphere, hydrosphere and biosphere. Currently the total arable land is 13.31% of the land surface, with only 4.71% supporting permanent crops.

The Earth


Mars

Mars is the fourth planet from the Sun and the second smallest planet in the Solar System. Named after the Roman god of war, it is often described as the "Red Planet", as the iron oxide prevalent on its surface gives it a reddish appearance. Mars is a terrestrial planet with a thin atmosphere, having surface features reminiscent both of the impact craters of the Moon and the volcanoes, valleys, deserts, and polar ice caps of Earth. The rotational period and seasonal cycles of Mars are likewise similar to those of Earth, as is the tilt that produces the seasons. Mars is the site of Olympus Mons, the second highest known mountain within the Solar System (the tallest on a planet), and of Valles Marineris, one of the largest canyons. The smooth Borealis basin in the northern hemisphere covers 40% of the planet and may be a giant impact feature. Mars has two known moons, Phobos and Deimos, which are small and irregularly shaped. These may be captured asteroids, similar to 5261 Eureka, a Martian trojan asteroid.


Until the first successful Mars flyby in 1965 by Mariner 4, many speculated about the presence of liquid water on the planet's surface. This was based on observed periodic variations in light and dark patches, particularly in the polar latitudes, which appeared to be seas and continents; long, dark striations were interpreted by some as irrigation channels for liquid water. These straight line features were later explained as optical illusions, though geological evidence gathered by unmanned missions suggest that Mars once had large-scale water coverage on its surface. In 2005, radar data revealed the presence of large quantities of water ice at the poles and at mid-latitudes. The Mars rover Spirit sampled chemical compounds containing water molecules in March 2007. The Phoenix lander directly sampled water ice in shallow Martian soil on July 31, 2008.
Mars is currently host to five functioning spacecraft: three in orbit – the Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter; and two on the surface – Mars Exploration Rover Opportunity and the Mars Science Laboratory Curiosity. Defunct spacecraft on the surface include MER-A Spirit, and several other inert landers and rovers, both successful and unsuccessful, such as the Phoenix lander, which completed its mission in 2008. Observations by the Mars Reconnaissance Orbiter have revealed possible flowing water during the warmest months on Mars.
Mars can easily be seen from Earth with the naked eye. Its apparent magnitude reaches −3.0, which is surpassed only by Jupiter, Venus, the Moon, and the Sun. Optical ground-based telescopes are typically limited to resolving features about 300 km (186 miles) across when Earth and Mars are closest, because of Earth's atmosphere.
The current understanding of planetary habitability – the ability of a world to develop and sustain life – favors planets that have liquid water on their surface. This most often requires that the orbit of a planet lie within the habitable zone, which for the Sun currently extends from just beyond Venus to about the semi-major axis of Mars. During perihelion, Mars dips inside this region, but the planet's thin (low-pressure) atmosphere prevents liquid water from existing over large regions for extended periods. The past flow of liquid water demonstrates the planet's potential for habitability. Some recent evidence has suggested that any water on the Martian surface may have been too salty and acidic to support regular terrestrial life.
The lack of a magnetosphere and extremely thin atmosphere of Mars are a challenge: the planet has little heat transfer across its surface, poor insulation against bombardment of the solar wind and insufficient atmospheric pressure to retain water in a liquid form (water instead sublimates to a gaseous state). Mars is also nearly, or perhaps totally, geologically dead; the end of volcanic activity has apparently stopped the recycling of chemicals and minerals between the surface and interior of the planet.

Evidence suggests that the planet was once significantly more habitable than it is today, but whether living organisms ever existed there remains unknown.


Mars lost its magnetosphere 4 billion years ago, so the solar wind interacts directly with the Martian ionosphere, lowering the atmospheric density by stripping away atoms from the outer layer. Both Mars Global Surveyor and Mars Express have detected ionised atmospheric particles trailing off into space behind Mars, and this atmospheric loss will be studied by the upcoming MAVEN orbiter. Compared to Earth, the atmosphere of Mars is quite rarefied.

Mars


Jupiter

Jupiter is the fifth planet from the Sun and the largest planet in the Solar System. It is a gas giant with mass one-thousandth that of the Sun but is two and a half times the mass of all the other planets in the Solar System combined. Jupiter is classified as a gas giant along with Saturn, Uranus and Neptune. Together, these four planets are sometimes referred to as the Jovian or outer planets. The planet was known by astronomers of ancient times, and was associated with the mythology and religious beliefs of many cultures. The Romans named the planet after the Roman god Jupiter. When viewed from Earth, Jupiter can reach an apparent magnitude of −2.94, making it on average the third-brightest object in the night sky after the Moon and Venus. (Mars can briefly match Jupiter's brightness at certain points in its orbit.)


Jupiter is primarily composed of hydrogen with a quarter of its mass being helium, although helium only comprises about a tenth of the number of molecules. It may also have a rocky core of heavier elements, but like the other gas giants, Jupiter lacks a well-defined solid surface. Because of its rapid rotation, the planet's shape is that of an oblate spheroid (it possesses a slight but noticeable bulge around the equator). The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century when it was first seen by telescope. Surrounding Jupiter is a faint planetary ring system and a powerful magnetosphere. There are also at least 67 moons, including the four large moons called the Galilean moons that were first discovered by Galileo Galilei in 1610. Ganymede, the largest of these moons, has a diameter greater than that of the planet Mercury.
Jupiter has been explored on several occasions by robotic spacecraft, most notably during the early Pioneer and Voyager flyby missions and later by the Galileo orbiter. The most recent probe to visit Jupiter was the Pluto-bound New Horizons spacecraft in late February 2007. The probe used the gravity from Jupiter to increase its speed. Future targets for exploration in the Jovian system include the possible ice-covered liquid ocean on the moon Europa.
Jupiter has the largest planetary atmosphere in the Solar System, spanning over 5000 km in altitude. As Jupiter has no surface, the base of its atmosphere is usually considered to be the point at which atmospheric pressure is equal to 10 bars, or ten times surface pressure on Earth.

Cassini Image of Jupiter



Saturn

Uranus

Neptune

Pluto

Eris

Ceres

Haumea

Makemake

Sedna
90842 Orcus

90482 Orcus is a trans-Neptunian object in the Kuiper belt with a large moon. It was discovered on February 17, 2004 by Michael Brown of Caltech, Chad Trujillo of the Gemini Observatory, and David Rabinowitz of Yale University. Precovery images as early as November 8, 1951 were later identified. It is believed to be a dwarf planet by some astronomers, and is massive enough to be considered one under the 2006 draft proposal of the IAU, though the IAU has not formally recognized it as such. Orcus is a plutino, locked in a 2:3 resonance with Neptune, making two revolutions around the Sun, while Neptune makes three. This is much like Pluto, except that it is constrained to always be in the oppositephase of its orbit from Pluto: Orcus is at aphelion when Pluto is at perihelion and vice versa. The surface of Orcus is relatively bright with albedo reaching 30%, grey in color and water rich. The ice is predominantly in crystalline form, which may be related to past cryovolcanic activity. Other compounds likemethane or ammonia may also be present. The existence of a satellite allowed astronomers to determine the mass of the system, which is approximately equal to that of the Saturnian moon Tethys. Using observations with the Hubble Space Telescope from November 13, 2005, Mike Brown and T.A. Suer detected a satellite. The discovery of a satellite of Orcus was reported in IAUC 8812 on 22 February 2007. The satellite was given the designation S/2005 (90482) 1 before later being named Vanth. It orbits Orcus in a nearly face-on circular orbit with aneccentricity of about 0.007, and an orbital period of 9.54 days. Vanth orbits only 9030 ± 89 km from Orcus and is too close to Orcus for ground-based spectroscopy to determine the surface composition of the satellite.

The presence of crystalline water ice, and possibly ammonia ice may indicate that a renewal mechanism was active in the past on the surface of Orcus. Ammonia so far has not been detected on any TNO or icy satellite of the outer planets other than Miranda. The 1.65 μm band on Orcus is broad and deep (12%), as on Charon, Quaoar, Haumea, and icy satellites of giant planets. On the other hand the crystalline water ice on the surfaces of TNOs should be completely amorphized by the galactic and Solar radiation in about 10 million years. Some calculations indicate that cryovolcanism, which is considered one of the possible renewal mechanisms, may indeed be possible for TNOs larger than about 1000 km.[19] Orcus may have experienced at least one such episode in the past, which turned the amorphous water ice on its surface into crystalline.

The preferred type of volcanism may have been explosive aqueous volcanism driven by an explosive dissolution of methane from water–ammonia melts. Models of internal heating via radioactive decay suggest that Orcus may be capable of sustaining an internal ocean of liquid water. Using observations with the Hubble Space Telescope from November 13, 2005, Mike Brown and T.A. Suer detected a satellite. The discovery of a satellite of Orcus was reported in IAUC 8812 on 22 February 2007. The satellite was given the designation S/2005 (90482) 1 before later being named Vanth. It orbits Orcus in a nearly face-on circular orbit with aneccentricity of about .007, and an orbital period of 9.54 days. Vanth orbits only 9030 ± 89 km from Orcus and is too close to Orcus for ground-based spectroscopy to determine the surface composition of the satellite.
Quaoar
Quaoar ("Kwawar") is a rocky trans-Neptunian object in the Kuiper belt with one known moon. Several astronomers believe it to be a dwarf planet, and is massive enough to be considered one under the 2006 draft proposal of the IAU, though the IAU has not formally recognized it as such. Quaoar was discovered on June 4, 2002 by astronomers Chad Trujillo and Michael Brown at the California Institute of Technology, from images acquired at the Samuel Oschin Telescope at Palomar Observatory. The discovery of thismagnitude-18.5 object, located in the constellation Ophiuchus, was announced on October 7, 2002, at a meeting of theAmerican Astronomical Society. The earliest prediscovery image proved to be a May 25, 1954 plate from Palomar Observatory. Quaoar is named for the Tongva creator god, following International Astronomical Union naming conventions for non-resonant Kuiper belt objects. The Tongva are the native people of the area around Los Angeles, where the discovery of Quaoar was made. Brown et al. had picked. The name with the more intuitive spelling Kwawar, but the preferred spelling among the Tongva was Qua-o-ar. in 2004, Quaoar was estimated to have a diameter of 1260 ± 190 km,  subsequently revised downward, which at the time of discovery in 2002 made it the largest object found in the Solar System since the discovery of Pluto. Quaoar was later supplanted by Eris, Sedna, Haumea, and Makemake. Quaoar is about as massive as (if somewhat smaller than) Pluto's moon Charon, which is approximately 2½ times as massive as Orcus. Quaoar is roughly one fifteenth the diameter of Earth, one quarter the diameter of the Moon, and a third the size of Pluto.
Quaoar was the first trans - Neptunian object to be measured directly from Hubble Space Telescope (HST) images, using a new, sophisticated method. Given its distance Quaoar is on the limit of the HST resolution (40 milliarcseconds) and its image is consequently "smeared" on a few adjacent pixels. By comparing carefully this image with the images of stars in the background and using a sophisticated model of HST optics (point spread function (PSF)), Brown and Trujillo were able to find the best-fit disk size which would give a similar blurred image. This method was recently applied by the same authors to measure the size of Eris.
The uncorrected 2004 HST estimates only marginally agree with the 2007 infrared measurements by the Spitzer Space Telescope which suggest a brighter albedo (0.19) and consequently a smaller diameter (844.4 +206.7 − 189.6 km). During the 2004 HST observations, little was known about the surface properties of Kuiper belt objects, but we now know that the surface of Quaoar is in many ways similar to those of the icy satellites of Uranus and Neptune. Adopting a Uranian-satellite limb darkening profile suggests that the 2004 HST size estimate for Quaoar was approximately 40% too large, and that a more proper estimate would be about 900 km. Using a weighted average of the Spitzer and corrected HST estimates, Quaoar, as of 2010, can be estimated at about 890 ± 70 km in diameter.

On 2011-05-04 Quaoar occulted a 16th-magnitude star, which gave 1170 km as the longest chord and suggests an elongated shape.


Quaoar

2007 OR 10

Charon

Our Moon

The Earth has only one satellite, Luna or simply known as the Moon. The Moon is the only natural satellite of the Earth, and the fifth largest satellite in the Solar System. It is the largest natural satellite of a planet in the Solar System relative to the size of its primary, having 27% the diameter and 60% the density of Earth, resulting in 1⁄81 its mass. The Moon is the second densest satellite after Io, a satellite of Jupiter.

The Moon is in synchronous rotation with Earth, always showing the same face with its near side marked by dark volcanic maria that fill between the bright ancient crustal highlands and the prominent impact craters. It is the brightest object in the sky after the Sun, although its surface is actually very dark, with a reflectance similar to that of coal. Its prominence in the sky and its regular cycle of phases have, since ancient times, made the Moon an important cultural influence on language, calendars, art and mythology. The Moon's gravitational influence produces the ocean tides and the minute lengthening of the day. The Moon's current orbital distance, about thirty times the diameter of the Earth, causes it to appear almost the same size in the sky as the Sun, allowing it to cover the Sun nearly precisely in total solar eclipses. This matching of apparent visual size is a coincidence.

Surface of the Moon

Lunar Maria –

The lunar maria are large, dark, basaltic plains on Earth's Moon, formed by ancient volcanic eruptions. They were dubbed maria, Latin for "seas", by early astronomers who mistook them for actual seas. They are less reflective than the "highlands" as a result of their iron-rich compositions, and hence appear dark to the naked eye. The maria cover about 16 percent of the lunar surface, mostly on the near-side visible from Earth. The few maria on the far-side are much smaller, residing mostly in very large craters. The traditional nomenclature for the Moon also includes one oceanus (ocean), as well as features with the names lacus (lake), palus (marsh) and sinus (bay). The latter three are smaller than maria, but have the same nature and characteristics.

Lunar Craters –

Lunar craters are craters on Earth's Moon. The Moon's surface is saturated with craters, almost all of which were formed by impacts. The word crater adopted by Galileo from the Greek word for vessel -. Galileo built his first telescope in late 1609, and turned it to the Moon for the first time on November 30, 1609. He discovered that, contrary to general opinion at that time, the Moon was not a perfect sphere, but had both mountains and cup-like depressions, the latter of which he gave the name craters.

Because of the Moon's lack of water, and atmosphere, or tectonic plates, there is little erosion, and craters are found that exceed two billion years in age. The age of large craters is determined by the number of smaller craters contained within it, older craters generally accumulating more small, contained craters.

The smallest craters found have been microscopic in size, found in rocks returned to Earth from the Moon. The largest crater called such is about 360 kilometers (220 mi) in diameter, located near the lunar South Pole.


Natural Satellites
Some Facts on Earth

1. The Earth is not exactly spherical; it is 42 kilometres wider than its height. It is 12,756 kilometres wide and 12,714 kilometres tall!


2. Earth travels around the Sun at n oval-shaped orbit. That means 149.6 million kilometers is its average distance from the Sun. The closest it gets to the Sun is 147.million kilometers and the farthest it gets is 152.1 million kilometers!
3. A full 360-degree rotation of the Earth takes 23 hours, 56 minutes and 4.09 seconds!
4. The Earth spins on its axis at about 1,670 km/hour and rotates at 107,218 km/ hour!
5. Earth is tilted constantly toward the Sun at a 23.5- degree angle.
6. Earth’s weight is 5,972,000 billion billion kilograms. But the correct word that should be used here is mass not weight get ready now for a class on mass!
Mass Class
Before we get into the subject of gravity and how it acts, it's important to understand the difference between weight and mass.

We often use the terms "mass" and "weight" interchangeably in our daily speech, but to an astronomer or a physicist they are completely different things. The mass of a body is a measure of how much matter it contains. An object with mass has a quality called inertia. If you shake an object like a stone in your hand, you would notice that it takes a push to get it moving, and another push to stop it again. If the stone is at rest, it wants to remain at rest. Once you've got it moving, it wants to stay moving. This quality or "sluggishness" of matter is its inertia. Mass is a measure of how much inertia an object displays.

Weight is an entirely different thing. Every object in the universe with mass attracts every other object with mass. The amount of attraction depends on the size of the masses and how far apart they are. For everyday-sized objects, this gravitational pull is vanishingly small, but the pull between a very large object, like the Earth, and another object, like you, can be easily measured. How? All you have to do is stand on a scale! Scales measure the force of attraction between you and the Earth. This force of attraction between you and the Earth (or any other planet) is called your weight.

If you are in a spaceship far between the stars and you put a scale underneath you, the scale would read zero. Your weight is zero. You are weightless. There is an anvil floating next to you. It's also weightless. Are you or the anvil mass-less? Absolutely not. If you grabbed the anvil and tried to shake it, you would have to push it to get it going and pull it to get it to stop. It still has inertia, and hence mass, yet it has no weight. See the difference?


Now let’s study our weight in different parts of the Solar System.
Earth – 35 kg Io – 6.42 kg

Moon – 5.8 kg Europa – 4.67 kg

Mercury - 13.2 kg Ganymede – 5.6 kg

Venus – 31.7 kg Callisto – 4.42 kg

Mars – 13.1 kg A White Dwarf – 45500000 kg

Jupiter – 82.7 kg A Neutron Star – 4900000000000 kg

Saturn – 37.2 kg Orcus – 963 grams

Uranus – 31.1 kg Sedna – 1.78 kg

Neptune – 39.3 kg Quaoar – 1.78 kg

Pluto – 2.3 kg Ceres - 0.96 kg

Sun – 947.5 kg Charon - 1 kg

Space – 0 kg Eris – 2.85 kg

Haumea – 1.56 kg Makemake – 1.7 kg
The situation in Space when objects can drift around is known as weightlessness. You might think that there isn’t gravity in Space. But there is a tiny amount of gravity called microgravity.
Unit 3 : Space Exploration
Rockets



Download 2.22 Mb.

Share with your friends:
1   2   3   4   5   6   7   8   9   ...   14




The database is protected by copyright ©ininet.org 2024
send message

    Main page