Labex 2010 Acronym osuti



Download 1.11 Mb.
Page16/17
Date28.01.2017
Size1.11 Mb.
#9015
1   ...   9   10   11   12   13   14   15   16   17

6.2.Others resources


Indiquer de façon détaillée les autres sources de financement prévues pour le projet ainsi que capacité du projet à générer de nouvelles resources pour assurer la pérennité du LABEX.


Other resources

Type

Ability to the ensure the viability of the Labex

Amount




















7.Appendices

7.1.State of the art references


Inclure la liste des références bibliographiques utilisées dans la partie « Etat de l’art ».
Références à mettre en forme par D&C


  • Physics on Colliders (WP1)


QCD

===


  1. A Schematic Model of Baryons and Mesons, Murray Gell-Mann, Phys.Lett.8:214-215,1964,.

  2. Ultraviolet Behavior of Nonabelian Gauge Theories, D.J. Gross & Frank Wilczek,Phys.Rev.Lett.30 :1343-1346,1973,.

  3. Reliable Perturbative Results for Strong Interactions?, H.David Politzer, Phys.Rev.Lett.30: 1346-1349,1973,.


GUT

===
Unity of All Elementary Particle Forces.

By H. Georgi & S.L. Glashow.

Phys.Rev.Lett.32:438-441,1974,.
Hierarchy of Interactions in Unified Gauge Theories.

By H. Georgi, Helen R. Quinn, Steven Weinberg.

Phys.Rev.Lett.33:451-454,1974,.
Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions.

By Jogesh C. Pati & Abdus Salam.

Phys.Rev.D8:1240-1251,1973,.
Lepton Number as the Fourth Color.

By Jogesh C. Pati & Abdus Salam.

Phys.Rev.D10:275-289,1974,Erratum-ibid.D11: 703-703,1975,.
SUSY

====
Supersymmetry, Supergravity and Particle Physics.

By Hans Peter Nilles.

Phys.Rept.110:1-162,1984,.
The Search for Supersymmetry: Probing Physics Beyond the Standard Model.

By Howard E. Haber & Gordon L. Kane.

Phys.Rept.117:75-263,1985,.
Dynamical EWSB

==============
Implications of Dynamical Symmetry Breaking: An Addendum.

By Steven Weinberg.

Phys.Rev.D19:1277-1280,1979,.
Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory.

By Leonard Susskind.

Phys.Rev.D20:2619-2625,1979,.
XDIM

====
The Hierarchy problem and new dimensions at a millimeter.

By Nima Arkani-Hamed, Savas Dimopoulos, G.R. Dvali.

Phys.Lett.B429:263-272,1998,. [hep-ph/9803315]
A Large mass hierarchy from a small extra dimension.

By Lisa Randall & Raman Sundrum.

Phys.Rev.Lett.83:3370-3373,1999,. [hep-ph/9905221]
Little Higgs

============
Electroweak symmetry breaking from dimensional deconstruction.

By Nima Arkani-Hamed, Andrew G. Cohen, Howard Georgi.

Phys.Lett.B513:232-240,2001,. [hep-ph/0105239]
The Littlest Higgs.

By N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson.

JHEP 0207:034,2002,. [hep-ph/0206021]


  • Astroparticles and Cosmology (WP2)




  1. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. By E. Komatsu, et al.,[arXiv:1001.4538] (Jan 2010) 48p.




  1. An excess of cosmic ray electrons at energies of 300-800 GeV. By J. Chang, et al., Nature 456:362-365,2008,.




  1. An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV. By PAMELA Collaboration Nature 458:607-609,2009,. [arXiv:0810.4995]




  1. Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. By H.E.S.S. Collaboration Astron.Astrophys.508:561, 2009,. [arXiv:0905.0105]




  1. On possible interpretations of the high energy electron-positron spectrum measured by the Fermi Large Area Telescope. By FERMI-LAT Collaboration Astropart.Phys.32:140-151,2009,. [arXiv:0905.0636]




  1. First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory. By XENON Collaboration Phys.Rev.Lett.100:021303,2008,. [arXiv:0706.0039]




  1. First results from DAMA/LIBRA and the combined results with DAMA/NaI. By DAMA Collaboration Eur.Phys.J.C56:333-355,2008,. [arXiv:0804.2741]




  1. Dark Matter Search Results from the CDMS II Experiment. By The CDMS-II Collaboration Science 327:1619-1621,2010,. [arXiv:0912.3592]




  1. DarkSUSY: Computing supersymmetric dark matter properties numerically. By P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, Mia Schelke, E.A. Baltz. JCAP 0407:008,2004,. [astro-ph/0406204]




  1. Comparison of SUSY spectrum calculations and impact on the relic density constraints from WMAP. By G. Belanger, S. Kraml, A. Pukhov. Phys.Rev.D72:015003,2005,. [hep-ph/0502079]




  1. Supersymmetry parameter analysis: SPA convention and project. By J.A. Aguilar-Saavedra, G. Belanger, M. Klasen, S. Kraml, et al., Eur.Phys.J.C46:43-60,2006,. [hep-ph/0511344]




  1. MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model. By G. Belanger, F. Boudjema, A. Pukhov, A. Semenov. Comput.Phys.Commun.176:367-382,2007,. [hep-ph/0607059]




  1. Positrons from dark matter annihilation in the galactic halo: Theoretical uncertainties. By T. Delahaye, R. Lineros, F. Donato, N. Fornengo, P. Salati. Phys.Rev.D77:063527,2008,. [arXiv:0712.2312]




  1. SUSY-QCD effects on neutralino dark matter annihilation beyond scalar or gaugino mass unification. By B. Herrmann, M. Klasen, K. Kovarik. Phys.Rev.D80:085025,2009,. [arXiv:0907.0030]



  • Neutrino physics (WP3)




  • E. Fermi, La Ricerca Scientifica 4 (II), (1933), 491-495; and Z.Physik, 88 (1934) 161.

  • C. S. Wu et al.,Phys. Rev. 105 (1957) 1413.

  • M. Goldhaber, L. Grodzins, and A. W. Sunyar, Phys. Rev. 109, (1958) 1015.

  • F. Reines and C. Cowan, Science 124 (1956) 103.

  • G. Danby et al., Phys. Rev. Lett. 9 (1962) 36.

  • M. Schwartz, Physical Review Letters 4 (1960) 306.

  • DONUT Collaboration, K. Kodama et al., Phys. Lett. B504 (2001) 218-224.

  • F.J. Hasert et al., Phys. Lett. 46B (1973) 121 and Phys. Lett. 46B (1973) 138.

  • The LEP and SLD Collaborations, Precision Electroweak Measurements on the Z Resonance, Phys. Rept. 427 (2006) 257.

  • L.-L. Chau and W.-Y. Keung, Phys. Rev. Lett. 53, 1802 (1984).

  • L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S. Mikheyev and S. Yu. Smirnov, Nuovo Cimento Soc. Ital. Fis. C 9, 17 (1986).

  • Super-Kamiokande Collaboration, Y. Ashie et al., Phys.Rev. D71 (2005) 112005, hep-ex/0501064.

  • K2K Collaboration, M.H. Ahn et al. Phys. Rev. D74 (2006) 072003, hep-ex/0606032.

  • Minos Collaboration, P. Adamson et al., Phys.Rev.Lett.101 (2008) 131802, Phys. Rev. D82 (2010) 051102.

  • OPERA Collaboration, N. Agafonova et al., Phys.Lett. B691 (2010) 138.

  • SNO Collaboration, B. Aharmim et al., Phys. Rev. C 75 (2007) 045502; Phys. Rev. Lett. 101, (2008) 111301.

  • Kamland Collaboration, S. Abe et al., Phys.Rev.Lett. 100, 221803 (2008).

  • CHOOZ Collaboration, M. Apollonio et al., Phys. Lett. B466 (1999) 415 ; Eur. Phys. J. C27 (2003) 331.

  • G.L. Fogli et al. Observables sensitive to absolute neutrino masses, Phys. Rev. D 78, 033010 (2008) arXiv:0805.2517v3.

  • M. Mezzetto, Next Challenge in Neutrino Physics: the theta_13 Angle, (2009) arXiv:0905.2842v1.

  • T2K Collaboration, R. Terri, Nuclear Physics B - Proc. Suppl. Vol.189 (2009) 277-281.

  • The NOνA Experiment at Fermilab (E929), http://www-nova.fnal.gov/.

  • Double Chooz Collaboration, F. Ardelier et al. (2006) arXiv:hep-ex/0606025v4.

  • Daya Bay proposal, http://arxiv.org/abs/hep-ex/0701029.

  • S. M. Bilenky. Neutrinoless double beta-decay. arXiv 1001.1946, 2010 and references therein.

  • NEMO Collaboration, J. Argyriades et al. Phys. Rev. C80 (2009) 032501, arXiv:0810.0248; R. Arnold et al. Nucl. Phys. A765 (2006) 483, arXiv:hep-ex/0601021.

  • WMAP Collaboration, G. Hinshaw et al. Astrophys. J. Suppl. 180 (2009) 225, [arXiv:0803.0732].




  • Nuclear structure and Energy (WP4)




  • Future accelerator Physics and technology (WP5)




  • Mathematical Physics (WP6)



  • Flavour Physics




  1. Unitary Symmetry and Leptonic Decays, N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963);

  2. CP-Violation in the Renormalizable Theory of Weak Interaction, M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973);

  3. Observation of CP violation in the B0 Meson System, B. Aubert et al.  (BaBar collaboration), Phys. Rev. Lett. 87, 091801 (2001).

  4. Observation of Large CP violation in the neutral B Meson System, K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 091802 (2001).

  5. Direct CP Violating Asymmetry in B0 →K+π- Decays.
    B. Aubert et al. (BaBar collaboration) Phys. Rev. Lett. 93, 131801 (2004).

  6. CP Violation and the CKM matrix : assessing the Impact of the Asymmetric B-factories, J. Charles et al. (CKMfitter), Eur. Phys.J.C41:1-131 (2005)

  7. Observation of Bs0-Bs0bar Oscillations, CDF Collaboration (A. Abulencia)
    Phys. Rev. Lett 97, 242003 (2006).

  8. Evidence for D0-D0bar Mixing, B. Aubert et  al. (BaBar Collaboration), Phys. Rev. Lett. 98, 211802 (2007).

  9. Evidence for D0-D0bar Mixing, M. Staric et al (Belle Collaboration),Phys. Rev. Lett. 98, 211803 (2007).




  • Model Standard and beyond




  1. Experimental Test of Parity Conservation in Beta Decay, CS Wu et al,
    Phys. Rev. 105 1413 (1957)

  2. Partial-symmetries of weak interactions, S.L. Glashow, Nuclear Physics 22: 579–588 (1961) 

  3. Broken Symmetry and the Mass of Gauge Vector Mesons, F. Engler and R. Brout, Phys. Rev. Lett. 13: 321–323.(1964). 

  4. Broken Symmetries and the Masses of Gauge Bosons, P.W. Higgs, Phys. Rev. Lett. 13: 508–509.(1964).

  5. Electromagnetic And Weak Interactions, A. Salam and J.C. Ward, Phys. Lett. 13:168-171,(1964).

  6. A Model of Leptons, S. Weinberg, Phys. Rev. Lett 19: 1264–1266 (1967)

  7. Predictions For Neutrino - Electron Cross-Sections In Weinberg's Model Of Weak Interactions, G. t’Hooft, Phys. Lett. B 37:195,(1971).

  8. Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment, F.J. Hasert et al., Phys. Lett. B 46: 138.(1973)

  9. Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at s**(1/2) = 540-GeV, G. Arnison et al. (UA1 Collaboration), Phys. Lett. B 122, 103 (1983)

  10. Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN ppbar collider, S. Loucatos et al. (UA2 Collaboration), Phys. Lett. B 122, 476 (1983)

  11. Experimental Observation of Lepton Pairs of Invariant Mass Around 95-GeV/c**2 at the CERN SPS Collider, G. Arnison et al. (UA1 Collaboration), Phys. Lett. B 126, 398 (1983)

  12. Evidence for Z0 ---> e+ e- at the CERN anti-p p Collider, P. Bagnaia et al. (UA2 Collaboration), Phys. Lett. B 129, 130 (1983)

  13. Observation of top quark production in anti-p p collisions,
    CDF Collaboration (F. Abe et al.), Phys. Rev. Lett. 74:2626-2631(1995).

  14. Observation of the top quark, D0 Collaboration (S. Abachi et al.), Phys. Rev. Lett.74:2632-2637 (1995).

  15. Searches for supersymmetric particles in e+ e- collisions up to 208-GeV and interpretation of the results within the MSSM, DELPHI Collaboration (J. Abdallah et al.), Eur. Phys. J.C31:421-479 (2003).

  16. Search for the standard model Higgs boson at LEP, LEP Working Group for Higgs boson searches, Phys. Lett. B 565 :61-75 (2003).

  17. Absolute mass lower limit for the lightest neutralino of the MSSM from e+e data at Vs  up to 209 GeV, ALEPH Collaboration, Phys. Lett. B 583 247-263 (2004).  

  18. Precision electroweak measurements on the Z resonance, ALEPH Collaboration and DELPHI Collaboration and L3 Collaboration and OPAL Collaboration and SLD Collaboration and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy flavour Group., Phys. Rept. 427:257 (2006).

  19. The ATLAS Experiment at the CERN Large Hadron Collider, ATLAS Collaboration
    JINST 3:S08003 (2008).




  • Gluon




  1. Evidence for planar events in e+e- annihilation at high energy, R Brandelik et al. (TASSO Collaboration), Phys. Lett. B 86, 243 (1979)




  • Cold neutrons




  1. The Physics of Ultracold Neutrons, V.K. Ignatovich, Oxford University Press (1990)

  2. Ultra-Cold Neutrons, R. Golub, D. Richardson, S.K. Lamoreaux, Adam Higler (1991).

  3. Quantum states of neutrons in the Earths gravitational field?, V.V. Nesvizhevsky, H.G. Börner, A.K. Petukhov, H. Abele, S. Bäßler, F.J. Rueß,Th. Stöferle, A. Westphal, A.M. Gagarski, G.A. Petrov, and A.V. Strelkov, Nature 415: 297-299 (2002).

  4. Constraint on the coupling of axionlike particles to matter via an ultracold neutron gravitational experiment., S. Bäßler, V.V. Nesvizhevsky, K.V. Protasov, and A.Yu. Voronin. , Phys. Rev. D 75, 075006 (2007).

  5. Dark matter, F. Zwicky, Helv. Phys. Acta 6, 110 (1933)

  6. On the Masses of Nebulae and of Cluster of Nebulae, F. Zwicky, ApJ 86, 217 (1937)

  7. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, Vera Rubin et W. Ford Jr, ApJ 159, 379 (1970)

  8. Extended rotation curves of spiral galaxies : dark haloes and modified dynamics, K.G Begeman, A.H Broeils, R.H. Sanders, MNRAS 249, 523 (1991)

  9. Supersymmetric relics from the Big Bang, John Ellis et al., Nucl. Phys B 238, 453 (1984)

  10. Cosmological constraints from the SDSS luminous red galaxies, Tegmark, M et al. , Phys. Rev. D 74, 123507 (2006)

  11. Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology, D. N Spergel et al, ApJS 170, 377 (2007)




Download 1.11 Mb.

Share with your friends:
1   ...   9   10   11   12   13   14   15   16   17




The database is protected by copyright ©ininet.org 2024
send message

    Main page