Space Geodesy Constrains Ice-Age Terminal Deglaciation: The Global ice-6g c (VM5a) Model By


Table SS1 North American Sea Level Sites (Selected)



Download 1.2 Mb.
Page6/7
Date18.10.2016
Size1.2 Mb.
#2405
1   2   3   4   5   6   7
Table SS1 North American Sea Level Sites (Selected)





Lat

Lon







N1

51.5

304.2

St Anthony/ 10 mile Lake, NL

Grant 1969, 1972, 1975, 1992; Dyke 2004

N2

59.8

295.7

Eclipse Channel, NL

Loken 1962; Dyke 2004

N3

59.4

290.0

W Ungava Bay, QC

Gangloff et al 1976; Lauriol et al 1979; Gray et al 1980; Lauriol 1982;

Lauriol & Gray 1983, 1987; Gray et al 1993;

Gray & Lauriol 1985; Gray 2001; Dyke 2004


N4

62.1

285.6

Deception Bay, QC

Matthews 1966, 1967; Gray & Lauriol 1985; Gray et al 1993; Bruneau & Gray 1997;

Dyke 2004



N5

53.6

282.1

Ft George, QC

Lee 1960;Vincent 1977; Filion et al 1991;

Dyke 2004



N6

58.7

265.6

Churchill, MAN

Dyck et al 1964; Wagner 1967; Craig 1969; Walcott 1972; Dredge & Nixon 1992;

Dyke 2004



N7

67.9

244.9

Kugluktuk (Coppermine), NU

Craig 1960; Nichols 1975; Guerts 1985; Morrison 1989; Dredge et al 1995;

Kerr 1996; Kerr et al 1997; Dyke 2004



N8

52.0

232.0

Bella Bella - Bella Coola, BC

Andrews & Retherford 1978;

Clague et al 1982; Cannon 2000; Dyke 2004



N9

49.6

236.8

Squamish Inlet, BC

Brooks 1994; Friele & Clague 2002 ;

Dyke 2004



N10

28.2

263.2

Galveston Bay, TX

Shepard & Moore 1955; McEwen 1969; Rehkemper 1969; Nelson & Bray 1970;

Simms et al 2007; Milliken et al 2008



N11

30.0

269.8

Mississippi Delta

McFarlan 1961; Törnqvist et al 2004

N12

25.4

279.8

Florida Keys

Lighty et al 1982; Robbin et al 1984;

Toscano & Lundberg 1998;

Toscano & Macintyre 2003


N13

32.7

279.6

S. South Carolina

Cinqemani et al 1982; Pardi et al 1984; Engelhart et al 2012

N14

41.2

286.1

New York, NY

Olson & Broecker 1961; Redfield & Rubin 1962; Redfield 1967; Field et al 1979;

Pardi & Newman 1980; Cinqemani et al 1982; Pardi et al 1984; Slagle et al 2006;

Engelhart et al 2012


N15

41.6

289.5

S. Massachusetts

Redfield & Rubin 1962; Stuiver 1963; Bloom 1963; Emery et al 1967; Redfield 1967; Newman et al 1980; Oldale & O’Hara 1980; Oldale 1988; Winkler & Sandford 1995; Guiterrez et al 2003; Engelhart et al 2012

N16

43.6

289.9

S. Maine

Belknap et al 1989; Kelley et al 1992, 1995; Barnhardt et al 1995; Gehrels et al 1996, 2002; Engelhart et al 2012

N17

45.8

295.7

Moncton, NB - Baie Verte NS

MacNeill 1969; Scott & Greenberg 1983; Rampton et al 1984; Amos & Zaitlin 1985; Shaw & Ceman 1999; Dyke 2004

N18

47.8

290.5

Riviere du Loup, QC

Dionne 1977, 1990, 2002; Garneau 1987; Dionne & Pfalzgraf 2001; Dyke 2004
















N5

56.6

283.6

Lac Guillaume Delisle (Richmond Gulf)

Hilaire-Marcel 1976; Allard & Seguin 1985; Filion et al 1991;Lajeunesse 2000;

Lavoie et al 2002; Lajeunesse & Allard 2003;

Dyke 2004


Allard, M., Seguin, M.K., 1985. La déglaciation d’une partie du versant hudsonien québécois : bassins des rivières Nastapoca, Sheldrake et à l’Eau Claire. Géographie physique et Quaternaire 39:1, 13-24.


Amos, C.L., Zaitlin, B.A., 1984. The effect of changes in tidal range on a sublittoral macrotidal sequence, Bay of Fundy, Canada. Geo-Marine Letters 4, 161–169.
Andrews & Retherford 1978. A reconnaissance survey of late Quaternary sea levels, Bella Bella/Bella Coola region, central British Columbia coast. CJES 15:341-350.

Brooks, G.R., 1994. The Fluvial Reworking of Late Pleistocene Drift, Squamish River Drainage Basin, Southwestern British Colombia. GpQ 48:51-68. DOI: 10.7202/032972ar



Bruneau, D., Gray, J.T., 1997. Ecoulements glaciaires et deglaciation hative du nard (ca 11 kaBP?) du nord-est de de la peninsula d’Ungava, Quebec, Canada. CJES 34:1089-1100.
Cinquemani, L.J., Newman, W.S., Sperling, J.A., Marcus, L.F., Pardi, R.R., 1982. Holocene Sea Level Fluctuations, Magnitudes and Causes. “IGCP Annual Meeting” Columbia, South Carolina
Cannon 2000. Settlement and Sea-Levels on the Central coast of British Columbia: Evidence from Shell Midden Cores. Am Antiquity 65(1):67-77.
Claguc, J., Harper, J. R., Hebda, R. J. & Howes, D. E. 1982: Late Quaternary sea levels and crustal movements, coastal British Columbia. Canadian Journal of Earth Sciences 19, 597-618.
Craig, B.G., 1960, Surficial Geology of North-central District of Mackenzie, Northwest territories. Geological Survey of Canada, Paper 60-18.
Craig, B.G. 1969. Late-glacial and post-glacial history of Hudson Bay: Geol. Sur. Can paper 68-53, 63-77.
Dionne, J.-C 1977. La mer de goldthwait au Quebec. Geographie Physique et Quaternaire (GpQ), 31:61-80.
Dionne, J.-C 1990. Observations sur le niveau marin relatif a l'Holocene, a Riviere-du-Loup, estuaire du Saint-Laurent, Quebec. Geographie Physique et Quaternaire, 44:43-53.
Dionne, J.-C, Pfalzgraf, F., 2001. Holocene sea level fluctuations on Rivière-Ouelle, south coast estuary of the St. Lawrence: Additional data. GpQ 55:289-300. DOI: 10.7202/006856ar
Dionne, J.-C 2002. A new relative sea level curve for the Rivière-du-Loup (Quebec). GpQ 56:33-44. DOI: 10.7202/008603ar
Dredge, L A; Nixon, F M, 1992. Glacial and Environmental Geology of northeastern Manitoba. Geological Survey of Canada, Memoir 432, 1992; 80 pages.
Dredge, L. A., Ward, B.C., Kerr, D.E., 1995. Surficial Geology, Aylmer Lake, District of Mackenzie, Northwest Territories. Geological Survey of Canada, "A" Series Map 1867A, 1995; doi:10.4095/207631.
Dyck, W, Fyles, J.G, Lowdon, J.A and Blake, W Jr 1962, 1963, 1964, 1966. Geological Survey of Canada dates I,II,III,V. Radiocarbon, 4:13-26; 5:39-55; 6:167-181; 8:39-127.
Dyke, A.S., 2004. Personal Communication.
Emery, K.O., Wigley, R.L., Bartlett, A.S., Rubin, M., Barghoorn, E.S. 1967. Freshwater Peat on Continental Shelf. Science 158, 1301-1307.
Engelhart, S.E., Horton, B.P., 2012. Holocene sea level database for the Atlantic coast of the United States, Quaternary Science Reviews 54, 12-25.
Filion, L., Saint-Laurent, D., Desponts, M., Payette, S., 1991. The late Holocene record of aelolian and fire activity in northern Quebec, Canada. The Holocene 1:201-208.
Friele, P.A., Clague, J.J., 2002. Readvance of glaciers in the British Columbia Coast Mountains at the end of the last glaciation. Quat. Int. 87:45-58.
Gangloff, P., Gray, J.T.. Hillaire-Marcel, C., 1976. Reconnaissance géomorphologique sur la côte ouest de la baie d'Ungava. Rev. Géogr. Montr., vol. 30, n°4, p. 339-348.
Garneau, M., 1987. Paleoecological reconstruction of a coastal peat of the estuary of the St. Lawrence: macrofossil analysis and sporopollinique. GpQ 41: 109-125. DOI: 10.7202/032669ar
Grant, D.R. 1969. Surficial Deposits, Geomorphic Features and Late Quaternary History of the Terminus of the Northern Peninsula of Newfoundland and Adjacent Quebec-labrador. Maritime Sediments 5:123-125.
Grant, D.R 1972. Post-glacial emergence of northern Newfoundland. Geol. Sur. Can paper 72-1B:100-102.
Grant, D.R. 1975. Surficial geology and sea-level changes, L’Anse aux Meadows National Historical Park, Newfoundland. GSC Paper 75-1A.
Grant, D.R., 1992. Quaternary geology of St. Anthony – Blanc-Sablon area, Newfoundland and Quebec. GSC Memoir 427.
Gray, J.T., de Boutray, B., Hillaire-Marcel, C., and Lauriol, B., 1980. Postglacial emergence of the west coast of Ungava Bay, Quebec. Arctic and Alpine Research, 12: 19-30.
Gray, J.T., and Lauriol, B. 1985. Dynamics of the late Wisconsin ice sheet in the Ungava Peninsula, interpreted from geomorphical evidence. Arctic and Alpine Research, 17: 279-310.
Gray, J., Lauriol, B., Bruneau, D., Ricard, J., 1993. Postglacial emergence of Ungava Peninsula, and its relationship to glacial history. CJES 30:1676-1696.
Gray, J.T., 2001. Patterns of ice flow and deglaciation chronology for souther coastal margins of Hudson Strait and Ungava Bay. In, Marine geology of Hudson Strait and Ungava Bay, Eastern Arctic Canada: Late Quaternary sediments, depositional environments, and late glacial-deglacial history derived from marine and terrestrial studies; Maclean, B (ed.); Geological Survey of Canada, Bulletin 566; p. 31-55.
Guerts, M.-A. 1985. The Holocene vegetation landscape in the region of Escape Rapids, Northwest Territories. GpQ 39:215-220. DOI: 10.7202/032603ar
Gutierrez, B.T., Uchupi, E., Driscoll, N.W., Aubrey, D.G. 2003. Relative sea-level rise and the development of valley-fill and shallow-water sequences in Nantucket Sound, Massachusetts. Mar Geol 193:295-314
Hafsten, U 1979. Late and post-Weichselian shorelevel changes in south Norway. In 'The Quaternary History of the North Sea':45-60.
Hillaire-Marcel, C., 1976. La deglaciation et le relevement isostatique sur la cote est de la baie d'Hudson. Cahiers de Geographie de Quebec, 20, pp. 185-220.
Kelley, J.T., Belknap, D.F., and Claesson, S., 2010. Drowned coastal deposits with associated archaeological remains from a sea-level slowstand: Northwestern Gulf of Maine, USA. Geology 38,p. 695-698, doi:10.1130/G31002.1
Kerr, D., 1996. Late Quaternary sea level history in the Paulatuk to Bathurst Inlet area, Northwest Territories CJES 33:389-403.
Kerr, D.E., Dredge, L.A., Ward, B.C., 1997. Surficial geology, Coppermine (east half), District of Mackenzie, Northwest Territories. GSC Map 1910A.
Lajeunesse 2000 PhD thesis Laval.
Lajeunesse, P., Allard, M., 2003 The Nastapoka drift belt, eastern Hudson Bay: implications of a stillstand of the Quebec–Labrador ice margin in the Tyrrell Sea at 8 ka BP. CJES 40:65-76.
Lauriol B., Gray, J.T., Hetu, B., Cyr, A., 1979. Le cadre chronologique et paléogéographique de l’évolution marine depuis la deglaciation dans la région d’Aupaluk Nouveau-Québec. GpQ 33:189-203. DOI: 10.7202/1000068ar
Lauriol, B., 1982. Geomorphologie quaternaire du sud de 1'Ungava. Paleo-Quebec, no 15, 174 p.
Lauriol, B., Gray, J.T., 1983. Un lac glaciaire dans la région du lac Minto—Nouveau-Québec. CJES 20:1488-1492.
Lauriol, B., and Gray, J.T. 1987. The decay and disappearance of the Late Wisconsinan ice sheet in the Ungava Peninsula, northern Quebec, Canada. Arctic and Alpine Research, 19: 109 - 126.
Lavoie, C., Allard, M., Hill, P.R., 2002. Holocene deltaic sedimentation along an emerging coast: Nastapoka River delta, eastern Hudson Bay, Quebec. CJES 39:505-518.
Lee, H.A., 1960. Late Glacial and Postglacial Hudson bay sea Episode. Science 131:1609-1611.
Lighty, R.G., Macintyre, I.G., and Stuckenrath, R., 1982, Acropora palmata reef framework: A

reliable indicator of sea level in the western Atlantic for the past 10,000 years: Coral Reefs 1, 125–130.


Loken, O., 1962. The Late-glacial and Post-glacial Emergence and the deglaciation of Northernmost Labrador. Geogr Bull 17:23-56.
MacNeill, R.H., 1969. Dating Some Quaternary Changes in Sedimentation in the Tantramar Marsh of New Brunswick. Maritime Sediments 5:1-2
Matthews, B., 1966. Radiocarbon dated post-glacial land uplift in northern Ungava, Canada. Nature, 211:1164-1166.

Matthews, B., 1967. Late Quaternary land emergence in northern Ungava, Quebec. Arctic, 20:176-201.


McEwen, M.C., 1969, Sedimentary facies of the modern Trinity Delta, in Lankford, R.R., and Rogers, J.J.W., eds., Holocene Geology of the Galveston Bay Area: Houston, Houston Geological Society, p. 53–77.
McFarland Jr., E., 1961. Radiocarbon Dating of Late Quaternary Deposits, South Louisiana. Geological Society of America Bulletin 72, 129–158. doi: 10.1130/0016-7606(1961)72[129:RDOLQD]2.0.CO;2.
Milliken, K.T., Anderson, J.B., and Rodriguez, A.B., 2008, A new composite Holocene sea-level curve for the northern Gulf of Mexico, in Anderson, J.B., and Rodriguez, A.B., eds., Response of Upper Gulf Coast Estuaries to Holocene Climate Change and Sea-Level Rise: Geological Society of America Special Paper 443, p. 1–11, doi: 10.1130/2008.2443(01).
Morrison, D. 1989. Radiocarbon dating Thule Culture. Arctic Anthropology 26(2):48-77.
Nelson, H.F., and Bray, E.E., 1970, Stratigraphy and history of the Holocene sediments in the Sabine–High Island area, Gulf of Mexico, in Morgan, J.P., ed., Deltaic Sedimentation Modern and Ancient: Society for Economic Paleontologists and Mineralogists (SEPM) Special Publication 15, p. 48–77.
Newman, W.S., Cinquemani, L.J., Pardi, R.R., Marcus, L.F., 1980. Holocene delevelling of the United States' east coast. In 'Earth Rheology, Isostasy and Eustasy'.
Nichols, H., 1975: Palynological and paleoclimatic study of the late Quaternary displacements of the boreal forest-tundra ecotone in Keewatin and MacKenzie, N.W.T., Canada. Colorado University. Institute of Arctic and Alpine Research. Occasional Paper no. 15, 97 pp.
Oldale, R.N., O'Hara, C.J., 1980. New radiocarbon dates from the inner continental shelf off

southern Massachusetts and a local sea-level-rise curve for the past 12,000yr. Geol 8:102-106


Oldale, R.N., 1988. A late Wisconsinan marine incursion into Cape Cod Bay, Massachusetts. Quat Res 30:237-250
Pardi, R.R., Tomecek, L., Newman, W.S. 1984. Radiocarbon 26, p429
Rampton, V N; Gauthier, R C; Thibault, J; Seaman, A A., 1984. Quaternary geology of New Brunswick. Geological Survey of Canada, Memoir 416, 1984; 77 pages, doi:10.4095/119730
Redfield, A.C., 1967. Post-glacial changes in the western North Atlantic Ocean. Science, 157:687-692.
Redfield, A.C., and Rubin, M., 1962. The age of salt marsh peat and its relation to recent changes in the sea level at Barnstable, Massachusetts. Natl. Acad. Sci. Proc 48:1728-1735.
Rehkemper, J.L., 1969. Sedimentology of Holocene estuarine deposits, Galveston Bay, Texas. Ph.D. Thesis, Rice University, Houston, TX, 61pp.
Robbin, D. M., 1984, A new Holocene sea level curve for the upper Florida Keys and Florida reef tract,

in Gleason, P. J., ed., Environments of south Florida, present and past: Miami Geological Society, p. 437–458.


Scott, D.B. and Greenberg, D.A 1983. Relative sea-level rise and tidal development in the Fundy tidal system. Can. J. Earth Sci (CJES) 20:1554-1564.
Shaw, J., Ceman, J., 1999 Salt-marsh aggradation in response to Late Holocene sea-level rise at Amherst Point, Nova Scotia, Canada. The Holocene, 9, 439-451
Shepard, F.P., Moore, D.G., 1955. Central Texas coast sedimentation: characteristics of sedimentary environment, recent history, and diagenesis. American Association of Petroleum Geologists Bulletin 39, 1463–1593.
Shinn, E.A., Hudson, J.H., Halley, R.B., Lidz, B., Robbin, D.M., Macintyre, I.G., 1982. Geology and sediment accumulation rates at Carrie Bow Cay, Belize. Smithsonian Contr Mar Sci 12:63–75
Simms, A.R., Lambeck, K., Purcell, A., Anderson, J.B., Rodriguez, A.B., 2007. Sea-level history of the Gulf of Mexico since the last glacial maximum with implications for the melting history of the Laurentide ice sheet. Quaternary Science Reviews 26, 920-40.
Törnqvist, T.E., Gonzalez, J.L., Newsom, L.A., van der Borg, K., de Jong, A.F.M., Kurnik, C.W., 2004. Deciphering Holocene sea-level history on the US Gulf Coast: a high-resolution record from the Mississippi Delta. Geological Society of America Bulletin 116, 1026-039.
Toscano, M.A., Lundberg, J., 1998. Early Holocene sea-level record from submerged fossil reefs on the southeast Florida margin. Geology 26, 255-258.
Toscano, M.A., Macintyre, I.G., 2003. Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated C-14 dates from Acropora palmate framework and intertidal mangrove peat. Coral Reefs 22, 257-70.
Vincent, J.-S 1977. Le Quaternaire De La Region du Cours Inferieur de la Grande Riviere, Quebec.

GSC Paper 76-19.


Wagner, F.J.E 1967. Additional radiocarbon dates, Tyrrell Sea area. Maritime Sediments, 3:100-104.
Walcott, R.I 1972. Past sea levels, eustasy and deformation of the earth Quat Res 2:1-14

Table S2. Eurasian observed site velocities and ICE-6G_C (VM5a) vertical predictions

















































__Horizontal__

Vertical

ICE-6G

Technique,

Place

Lat.

Lon.

Speed

Azim.

Up

VM5a

site abbreviation,




°N

°E

mm/yr

°

mm/yr

mm/yr

observation time in yr




Sites on the Eurasian plate not beneath the former Fennoscandia ice sheet 82

Cascais (Portugal)

38.69

–9.42

0.3

±

0.7

–60

0.0

±

1.6

–0.4

G casc 12

Newlyn (England)

50.10

–5.54

0.2

±

0.9

–71

–0.8

±

1.9

–0.7

G newl 10

Brest (France)

48.38

–4.50

0.4

±

1.2

4

–0.8

±

2.7

–0.6

G brst 7

Madrid (Spain)

40.43

–4.25

0.5

±

0.7

–121

0.6

±

1.5

0.1

G madr 10 V dss65 10

Madrid (Spain)

40.44

–3.95

0.2

±

0.7

108

–2.6

±

1.6

0.1

G vill 12

Santander (Spain)

43.47

–3.80

0.2

±

1.4

116

–0.7

±

3.1

–0.3

G cant 6

Yebes (Spain)

40.52

–3.09

0.4

±

0.7

–139

–0.5

±

1.5

0.1

G yebe 12 V yebes 8

Morpeth (England)

55.21

–1.69

0.4

±

1.0

36

1.5

±

2.1

0.5

G morp 9

Socoa (France)

43.40

–1.68

0.7

±

2.3

–60

–1.8

±

5.2

–0.2

G scoa 3

North Shields (England)

55.01

–1.44

0.5

±

1.2

94

0.3

±

2.6

0.3

G nstg 7

Hermitage (England)

51.45

–1.28

0.1

±

0.8

–38

–0.9

±

1.7

–0.4

G hrm1 11

La Rochelle (France)

46.16

–1.22

0.2

±

0.8

132

–0.5

±

1.9

–0.2

G lroc 10

Alicante (Spain)

38.34

–0.48

0.2

±

1.1

–61

–0.5

±

2.5

–0.3

G alac 8

Chize (France)

46.13

–0.41

0.2

±

0.8

125

–0.5

±

1.8

–0.1

G chiz 11

Teddington (England)

51.42

–0.34

0.4

±

1.8

139

–1.4

±

4.0

–0.4

G npld 5

Valencia (Spain)

39.48

–0.34

0.4

±

1.7

99

–1.2

±

3.8

–0.2

G vale 5

Greenwich (England)

50.87

0.34

0.3

±

0.6

–57

–0.4

±

1.4

–0.3

S rgo 16 G hers 10 hert 6

Ebro Observatory (Spain)

40.82

0.49

0.5

±

0.6

163

–0.5

±

1.3

–0.2

G ebre 15

Sheernes (England)

51.45

0.74

0.2

±

0.8

–167

–0.1

±

1.9

–0.4

G shee 10

Escornacrabes (Spain)

42.69

0.98

0.1

±

0.7

–97

–0.2

±

1.6

–0.1

G esco 12

Toulouse (France)

43.56

1.48

0.4

±

0.7

138

–0.3

±

1.6

–0.1

G tlse 11 D tlsa 13

Bellmunt (Spain)

41.60

1.40

0.2

±

0.7

176

–0.3

±

1.5

–0.2

G bell 13

Ibiza (Spain)

38.91

1.45

0.6

±

2.0

116

–1.5

±

4.4

–0.5

G ibiz 4

Llivia (Spain)

42.48

1.97

0.3

±

0.7

125

–0.3

±

1.6

–0.2

G lliv 12

Paris (France)

48.84

2.33

0.3

±

0.9

151

0.3

±

2.0

0.0

G opmt 9

Cap de Creus (Spain)

42.32

3.32

0.4

±

1.0

132

–0.6

±

2.2

–0.4

G creu 8

Dentergem (Belgium)

50.93

3.40

0.7

±

1.6

–6

–1.8

±

3.6

–0.2

G dent 5

Brussels (Belgium)

50.80

4.36

0.3

±

0.9

134

0.2

±

1.9

–0.1

G brus 10

Delft (Netherlands)

51.99

4.39

0.5

±

0.7

–175

–1.4

±

1.5

–0.4

G dlft 12

Dourbes (Belgium)

50.09

4.59

0.2

±

0.8

158

–0.1

±

1.9

0.0

G dour 10

Saint des Vignes (France)

45.88

4.68

0.2

±

0.6

113

–0.5

±

1.4

0.0

G sjdv 14

Redu (Belgium)

50.00

5.14

0.3

±

1.0

–172

0.5

±

2.1

0.0

G redu 9

Waremme (Belgium)

50.69

5.25

0.2

±

1.7

105

0.4

±

3.8

–0.1

G ware 5

Marseille (France)

43.28

5.35

0.1

±

1.2

163

–1.0

±

2.6

–0.3

G mars 7

Kootwijk (Netherlands)

52.18

5.81

0.4

±

0.7

65

–0.8

±

1.6

–0.4

G kosg 12 S kotwk2 11

Titz (Germany)

51.04

6.43

0.0

±

1.2

–156

0.4

±

2.7

–0.1

G titz 7

Westerbork (Netherlands)

52.91

6.60

0.6

±

0.6

–21

–0.9

±

1.3

–0.6

G wsrt 15

Borkum (Germany)

53.56

6.75

0.6

±

1.3

–175

–0.9

±

3.0

–0.9

G bork 6

Euskirchen (Germany)

50.67

6.76

0.7

±

0.8

–14

–1.5

±

1.8

0.0

G eusk 10

Effelsberg (Germany)

50.52

6.88

0.4

±

0.9

146

–0.5

±

1.6

0.0

V eflsberg 17

Grasse (France)

43.75

6.92

0.2

±

0.6

77

0.0

±

1.3

–0.3

S grasse 19 G gras 12

Zimmerwald (Switzerland)

46.88

7.47

0.4

±

0.4

26

0.2

±

0.8

0.0

S zimmer 15 G zimm 17 zimj 11 zimz 4 wab2 7

Huegelheim (Germany)

47.83

7.60

0.3

±

1.2

31

–0.6

±

2.6

0.1

G hueg 7

Helogland Island (Germany)

54.17

7.89

0.4

±

0.6

–19

–0.2

±

1.3

–1.2

G helg 14

Karlsruhe (Germany)

49.01

8.41

0.4

±

0.8

87

–0.3

±

1.8

0.1

G karl 11

Frankfurt (Germany)

50.09

8.66

1.1

±

1.3

163

0.0

±

2.9

0.0

G ffmj 6

Kloppenheim (Germany)

50.22

8.73

0.2

±

0.8

120

–1.2

±

1.8

0.0

G klop 10

Bregenz (Austria)

47.52

9.78

0.6

±

1.6

63

0.9

±

3.6

0.0

G pfan 5

Braunschweig (Germany)

52.30

10.46

0.1

±

0.7

37

–0.3

±

1.6

–0.3

G ptbb 12

Hohenbuenstorf (Germany)

53.05

10.48

0.3

±

0.8

168

–0.1

±

1.8

–0.4

G hobu 10

Oberpfaffenhofen (Germany)

48.09

11.28

0.3

±

1.5

45

–0.5

±

3.3

0.0

G obe2 6

Warnemuende (Germany)

54.17

12.10

0.1

±

1.0

8

0.2

±

2.2

–0.2

G warn 9

Leipzig (Germany)

51.35

12.37

0.5

±

1.0

–155

–0.6

±

2.2

–0.1

G leij 9

Wettzell (Germany)

49.15

12.88

0.2

±

0.3

59

–0.5

±

0.6

0.0

V wettzell 20 S wetzel 19

G wtzr 14 wtza 14



wtzz 12 wtzt 5 wtzj 5

Potsdam (Germany)

52.38

13.07

0.2

±

0.5

–65

–0.9

±

1.1

–0.1

G pots 17 S potsdm 14

Sassnitz (Germany)

54.51

13.64

0.3

±

0.9

–151

0.3

±

2.0

0.2

G sass 9

Dresden (Germany)

51.03

13.73

0.7

±

0.9

–5

–0.5

±

2.0

–0.1

G dres 8 drej 5

Ondrejov (Czech Republic)

49.91

14.79

0.1

±

1.0

–104

0.1

±

2.2

–0.1

G gope 9

Graz (Austria)

47.07

15.49

1.1

±

0.7

62

0.5

±

1.4

0.0

S graz 17 G graz 12

Mattersburg (Austria)

47.74

16.40

1.1

±

1.0

33

–0.6

±

2.2

0.0

G mtbg 9

Wroclaw (Poland)

51.11

17.06

0.6

±

0.8

–101

–1.0

±

1.8

–0.2

G wroc 11

Borowiec (Poland)

52.28

17.07

0.3

±

0.6

–115

–0.9

±

1.4

–0.1

G bor1 14 S borowc 11

Penc (Hungary)

47.79

19.28

0.8

±

0.7

67

–1.8

±

1.6

0.0

G penc 12

Ganovce (Slovakia)

49.03

20.32

1.0

±

1.4

–122

–1.0

±

3.2

0.0

G ganp 6

Lamkowko (Poland)

53.89

20.67

0.4

±

0.9

–70

–1.2

±

2.0

0.1

G lama 10

Jozefoslaw (Poland)

52.10

21.03

0.2

±

0.6

62

–0.2

±

1.4

–0.3

G joze 12 joz2 6

Borowa Gora (Poland)

52.48

21.04

0.5

±

0.7

–1

–0.5

±

1.5

–0.3

G bogi 8 bogo 10

Lviv (Ukraine)

49.84

24.01

0.5

±

0.8

–67

–0.3

±

1.8

0.0

G sulp 11

Riga (Latvia)

56.95

24.06

0.1

±

1.0

–133

0.1

±

2.2

0.7

G riga 8 S riga 11

Vilnius (Lithuania)

54.65

25.30

0.3

±

0.9

–81

–0.5

±

2.1

0.2

G vlns 9

Golosiiv (Ukraine)

50.36

30.50

0.7

±

0.8

–79

–0.8

±

1.8

0.1

G glsv 10

Mykolaiv (Ukraine)

46.97

31.97

0.5

±

0.9

–115

–0.3

±

1.9

0.1

G mikl 10

Crimea (Ukraine)

44.41

33.99

0.2

±

0.8

–23

0.0

±

1.8

–0.4

G crao 8 V crimea 8

Kharkiv (Ukraine)

50.01

36.24

0.6

±

1.8

–27

–0.3

±

4.0

0.2

G khar 5

Obinsk (Russia)

55.11

36.57

0.4

±

0.8

–80

0.2

±

1.7

0.0

G mobn 11

Zwenigorod (Russia)

55.70

36.76

0.5

±

1.5

–62

–0.3

±

3.4

–0.1

G zwe2 5

Mendeleevo (Russia)

56.02

37.21

0.4

±

0.7

–57

0.3

±

1.6

–0.1

G mdvj 10 mdvo 6

Arti (Russia)

56.43

58.56

0.3

±

0.7

–99

0.1

±

1.5

0.2

G artu 13

Khantaui (Kazakhstan)

44.21

74.00

1.1

±

0.8

–55

0.0

±

1.8

0.4

G sumk 11

Novosibirsk (Russia)

54.84

83.24

0.7

±

0.8

168

0.4

±

1.7

0.4

G nvsk 11

Norilsk (Russia)

69.36

88.36

1.1

±

0.7

–90

1.1

±

1.6

0.4

G nril 12

Krasnoyarsk (Russia)

55.99

92.79

2.1

±

2.0

–130

–1.6

±

4.2

0.4

G kstu 4 D krab 8




Sites on the Eurasian plate beneath the former Fennoscandia ice sheet 55

Stavanger (Norway)

59.02

5.60

0.6

+

1.2

–101

0.7

+

2.7

0.7

G stas 7

Trondheim (Norway)

63.37

10.32

1.6

+

1.1

–72

3.5

+

2.3

2.9

G trds 8

Ny Alesund (Spitsbergen Island)

78.93

11.87

0.9

+

0.4

–174

7.2

+

0.8

0.8

G nyal 17 nya1 13

V nyales20 9 D spia 13



Onsala (Sweden)

57.40

11.93

0.9

±

0.4

–142

2.3

±

0.9

1.2

V onsala60 23 G onsa 14

Kxbenhavn (Denmark)

55.74

12.50

0.4

+

1.2

–141

0.7

+

2.6

0.0

G budp 7

Boras (Sweden)

57.71

12.89

0.8

+

0.8

–133

3.7

+

1.8

2.3

G spt0 11

Vilhelmina (Sweden)

64.70

16.56

0.8

+

0.6

–60

8.5

+

1.3

7.0

G vil0 14

Maartsbo (Sweden)

60.60

17.26

0.7

+

0.7

–162

7.0

+

1.6

6.7

G mar6 12

Visby (Sweden)

57.65

18.37

0.7

+

0.8

–171

2.7

+

1.7

1.4

G vis0 11

Tromso (Norway)

69.66

18.94

1.0

+

0.6

–26

2.0

+

1.3

0.7

G trom 13 tro1 7

Kiruna (Sweden)

67.86

20.97

0.6

+

0.5

–45

6.9

+

1.0

6.4

G kiru 12 ske0 5 kir0 13

Klaipeda (Lithuania)

55.72

21.12

0.7

+

2.7

–165

2.5

+

5.9

0.6

G klpd 3

Vaasa (Finland)

62.96

21.77

0.5

+

0.7

172

8.3

+

1.6

8.0

G vaas 12

Suurupi (Estonia)

59.46

24.38

1.1

+

2.3

152

3.0

+

5.1

1.2

G suur 3

Metsahovi (Finland)

60.22

24.40

1.0

+

0.4

160

3.8

+

0.9

2.3

G mets 15 metz 13

D meta 13



Sodankyia (Finland)

67.42

26.39

0.2

+

0.7

–141

6.3

+

1.6

7.8

G soda 12

Svetlo (Russia)

60.53

29.78

1.0

+

0.9

162

2.2

+

2.1

2.3

G svtl 9

Joensu (Finland)

62.39

30.10

0.8

+

0.7

153

3.3

+

1.5

4.4

G joen 12

Vardo (Norway)

70.34

31.03

0.5

+

1.1

–122

2.5

+

2.5

0.8

G vars 8

Inverness (Scotland)

57.49

–4.22

0.8

+

2.5

–89

3.4

+

5.7

1.6

B inve 3

Bergen (Norway)

60.29

5.27

1.3

+

1.4

–93

3.4

+

3.1

1.1

B brgs 6

Alesund (Norway)

62.48

6.20

1.6

+

1.3

–61

3.1

+

3.0

–0.1

B ales 6

krss (Norway)

58.08

7.91

0.7

+

1.3

–107

2.7

+

3.0

0.3

B krss 6

dags (Norway)

60.42

8.50

1.4

+

2.1

–101

6.6

+

5.2

4.0

B dags 4

Dombas (Norway)

62.07

9.11

1.3

+

2.3

–78

7.8

+

5.3

3.4

B doms 4

Smidstrup (Denmark)

55.64

9.56

0.3

+

1.4

–115

–0.1

+

3.3

–1.3

B smid 6

suld (Denmark)

56.84

9.74

0.3

+

1.3

–175

1.2

+

3.2

–0.7

B suld 7

Oslo (Norway)

59.74

10.37

0.9

+

1.2

–93

5.9

+

2.7

5.4

B osls 7

Smogen (Sweden)

58.35

11.22

1.5

+

2.2

–110

4.6

+

5.2

3.0

B smo0 4

Vanersborg (Sweden)

58.69

12.04

1.0

+

0.9

–110

4.3

+

2.1

4.4

B van0 10

Trysil (Norway)

61.42

12.38

2.0

+

2.4

–81

9.0

+

5.9

7.0

B trys 3

Karlstad (Sweden)

59.44

13.51

0.9

+

0.9

–130

5.8

+

2.1

6.3

B kar0 10

Hassleholm (Sweden)

56.09

13.72

0.7

+

0.9

–136

1.6

+

2.1

0.5

B has0 10

Jonkoping (Sweden)

57.75

14.06

1.0

+

0.9

–154

3.0

+

2.1

2.6

B jon0 10

BodoX (Norway)

67.28

14.36

1.7

+

1.4

–63

5.8

+

3.2

1.4

B bods 6

Sveg (Sweden)

62.02

14.70

0.9

+

0.9

–86

8.3

+

2.1

7.6

B sve0 10

Ostersund (Sweden)

63.44

14.86

1.1

+

0.9

–80

9.0

+

2.2

6.9

B ost0 10

Leksand (Sweden)

60.72

14.88

0.7

+

0.9

–107

8.2

+

2.3

7.5

B lek0 10

Oskarshamn (Sweden)

57.07

16.00

0.8

+

0.9

–151

2.6

+

2.2

1.4

B osk0 10

Norrkoping (Sweden)

58.59

16.25

1.1

+

0.9

–162

5.0

+

2.1

4.0

B nor0 10

Uppsala (Swden)

59.87

17.59

0.9

+

1.8

–114

7.7

+

4.7

5.4

B upp0 5

Sundsvall (Sweden)

62.23

17.66

0.6

+

0.9

–140

9.5

+

2.2

8.3

B sun0 10

Lovo (Sweden)

59.34

17.83

0.9

+

0.9

–175

5.8

+

2.2

4.3

B lov0 10

Arjeplog (Sweden)

66.32

18.12

1.0

+

0.9

–62

8.5

+

2.2

6.5

B arj0 10

Umea (Sweden)

63.58

19.51

0.5

+

0.9

–133

10.6

+

2.2

8.6

B ume0 10

Olkiluoto (Finland)

61.24

21.47

1.1

+

0.9

158

7.1

+

2.3

5.7

B olki 10

irbe (Latvia)

57.55

21.85

0.7

+

1.7

144

2.7

+

4.4

0.5

B irbe 5

Tuorla (Finland)

60.42

22.44

1.1

+

0.9

166

5.7

+

2.2

3.4

B tuor 10

Overkalix (Sweden)

66.32

22.77

0.2

+

0.9

–118

9.2

+

2.2

9.3

B ove0 10

Kivetty (Finland)

62.82

25.70

1.2

+

0.9

152

6.7

+

2.3

6.5

B kive 10

Oulu (Finland)

65.09

25.89

0.7

+

0.9

134

9.0

+

2.2

9.0

B oulu 10

Kevo (Finland)

69.76

27.01

0.2

+

0.9

–32

4.8

+

2.3

3.3

B kevo 10

Virolahti (Finland)

60.54

27.55

1.1

+

0.9

166

3.1

+

2.4

2.5

B viro 10

Kuusamo (Finland)

65.91

29.03

0.8

+

0.9

141

7.8

+

2.6

7.2

B kuus 10

Romuvaara (Finland)

64.22

29.93

1.1

+

0.9

147

5.7

+

2.6

6.2

B romu 10

The horizontal velocity is described by a speed (in mm/yr) and an azimuth (in degrees clockwise of North).

Values after the ± are 1–dimensional 95% confidence limits.

The right column list the sites used to estimate the velocity of the place:

the space technique (G– GPS., V– VLBI, S– SLR, D-DORIS, B– BIFROST), the site abbreviation, and the effective time period of observation (in yr).

For example, Ny Alesund has 17 years of GPS data at site nyal, 13 years of G data at GPS site nya1, 9 years of VLBI data site nyales20, and 13 years of DORIS data at site spia.

ICE-6G_C (VM5a) is the postglacial rebound model in this study.

We define the effective time period of observations to be the root sum square of the time period before an offset and the time period after the offset and the root sum square of the time period of 2 or more sites at the same place.

We take the standard error in uplift to be 10 mm divided by the effective time period of observation [see Argus et al. 2010, Argus and Peltier 2010].


Download 1.2 Mb.

Share with your friends:
1   2   3   4   5   6   7




The database is protected by copyright ©ininet.org 2024
send message

    Main page