Exopolysaccharide
H. somnus produces an exopolysaccharide that contains mannose and galactose, whose production is upregulated when the bacteria are grown anaerobically and in high salt (T.J. Inzana, A. Cox, and G. Glindemann, Abstr. 102nd General Meeting of the American Society for Microbiology, abstr. Z-26, 2002) (40). We found in H. somnus 129Pt all but one of the genes involved in the pathways leading to GDP-D-mannose and GDP-D-galactose (Table S16), which are incorporated into the exopolysaccharide of Burkholderia cepacia (39). The genes necessary for GDP-D-galactose synthesis included phosphoglucomutase (HS_0730), UDP-glucose pyrophosphorylase (galU; HS_1117) and UDP-glucose epimerase (galE; HS_0789). For GDP-D-mannose synthesis, the genes that were present in H. somnus 129Pt included phosphoglucose isomerase (pgi; HS_0938), phosphomannose isomerase/mannose-6-phosphate isomerase (manA; HS_0605) and phosphomannomutase (manB; HS_1118 and HS_1670). Missing from H. somnus 129Pt was the manC gene encoding GDP-D-mannose-pyrophosphorylase, which catalyzes the last step in the formation of GDP-D-mannose, the conversion of mannose-1-phosphate to GDP-D-mannose.
Haemophilus-specific uptake sequences
The H. influenzae DNA uptake signal sequence is overrepresented in H. ducreyi and H. somnus (2). Bakkali et al. (2) report 41 Haemophilus-specific uptake sequences (hUSs) in H. ducreyi, most of which cluster in 2 islands of bacteriophage genes. We found the H. influenzae consensus of “AAGTGCGGT” (and its reverse complement “ACCGCACTT”) in 37 locations throughout the H. ducreyi 35000HP genome, and in agreement with the previous report, most of these were in areas containing bacteriophage genes. In addition, 32 (87%) of the consensus sequence locations in H. ducreyi 35000HP were in CDSs. Bakkali et al. (2) also reported that the unfinished sequence of H. somnus 129Pt has 1205 hUSs. We found that the finished genome sequence of H. somnus 129Pt had approximately 1244 potential hUSs. 62% (776) of these sites were within coding sequences and the rest were in intergenic regions. H. somnus 129Pt, H. ducreyi 35000HP and H. influenzae Rd all had genes involved in DNA uptake and transformation (11, 12, 45)(Table S13).
Restriction modification systems
As shown in Table S15, H. somnus 129Pt had genes encoding components of type I and the BcgI restriction-modification systems. H. ducreyi 35000HP had one gene encoding a possible type I methytransferase protein(HD0914), as well as genes encoding a type III system and possibly the BcgI system. H. influenzae Rd had genes encoding components of type I, II and III systems, but not BcgI. In terms of type I systems, H. somnus 129Pt had hsdS (HS_0556) and an hsdR gene (HS_0559) that was also present in H. influenzae Rd (HI1285). H. somnus 129Pt had a second hsdS (HS_0560), but not hsdM. H. influenzae Rd had one complete type I system composed of the genes HI1285 – HI1287 (hsdR, hsdS and hsdM). Another type I system in H. influenzae Rd consisted of HI0215 (hsdM, which contained a frameshift), HI0216 (hsdS) and hsdR (HI0218). Neither H. somnus 129Pt nor H. ducreyi 35000HP had any type II system genes. H. influenzae Rd had three complete type II systems, encoded by HI0512 and HI0513, HI1040 and HI1041, HI1393 and HI1392. H. somnus 129Pt did not have any type III restriction-modification system genes. H. influenzae Rd had a type III methylase gene (HI1056), while H. ducreyi 35000HP had a complete type III system (HD1690 to HD1693).
There is evidence supporting the hypothesis that restriction modification systems may move between and within genomes and may cause evolutionary changes in genomes (25). This evidence includes observations of the proximity of mobile genetic elements to restriction modification gene complexes. Our results indicated that all of the restriction modification system gene complexes in H. somnus 129Pt were in the vicinity of mobile elements, including putative prophage regions and transposases (Table 15). Also, as the H. influenzae DNA uptake signal sequence is overrepresented in H. somnus (2), mobile elements may not be necessary for the movement of restriction modification gene complexes. Several of the restriction-modification genes either contain the H. influenzae DNA uptake signal sequence or are close to H. influenzae DNA uptake signal sequences, so they may have been acquired by DNA uptake.
REFERENCES
1. Andre, A., W. Maccheroni, F. Doignon, M. Garnier, and J. Renaudin. 2003. Glucose and trehalose PTS permeases of Spiroplasma citri probably share a single IIA domain, enabling the spiroplasma to adapt quickly to carbohydrate changes in its environment. Microbiology 149:2687-2696.
2. Bakkali, M., T. Y. Chen, H. C. Lee, and R. J. Redfield. 2004. Evolutionary stability of DNA uptake signal sequences in the Pasteurellaceae. Proc. Natl. Acad. Sci. USA. 101:4513-4518.
3. Bell, A. W., S. D. Buckel, J. M. Groarke, J. N. Hope, D. H. Kingsley, and M. A. Hermodson. 1986. The nucleotide sequences of the rbsD, rbsA, and rbsC genes of Escherichia coli K12. J. Biol. Chem. 261:7652-7658.
4. Binet, M. R., and O. M. Bouvet. 1998. Transport of glucose by a phosphoenolpyruvate:mannose phosphotransferase system in Pasteurella multocida. Res. Microbiol. 149:83-94.
5. Boos, W., and H. Shuman. 1998. Maltose/Maltodextrin System of Escherichia coli:Transport, Metabolism, and Regulation. Microbiol. Mol. Biol. Rev. 62:204-229.
6. Bozue, J. A., M. V. Tullius, J. Wang, B. W. Gibson, and R. S. Munson Jr. 1999. Haemophilus ducreyi produces a novel sialyltransferase. Identification of the sialyltransferase gene and construction of mutants deficient in the production of the sialic acid-containing glycoform of the lipooligosaccharide. J. Biol. Chem. 274:4106-4114.
7. Brenchley, J. E., M. J. Prival, and B. Magasanik. 1973. Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J. Biol. Chem. 248:6122-6128.
8. Caspi, R., H. Foerster, C. A. Fulcher, R. Hopkinson, J. Ingraham, P. Kaipa, M. Krummenacker, S. Paley, J. Pick, S. Y. Rhee, C. Tissier, P. Zhang, and P. D. Karp. 2006. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 34:D511-D516.
9. Doten, R. C., and R. P. Mortlock. 1985. Characterization of xylitol-utilizing mutants of Erwinia uredovora. J. Bacteriol. 161:529-533.
10. Doten, R. C., and R. P. Mortlock. 1985. Production of D- and L-xylulose by mutants of Klebsiella pneumoniae and Erwinia uredovora. Appl. Environ. Microbiol. 49:158-162.
11. Dougherty, B. A., and H. O. Smith. 1999. Identification of Haemophilus influenzae Rd transformation genes using cassette mutagenesis. Microbiology 145:401-409.
12. Dubnau, D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53:217-244.
13. Erbel, P. J., K. Barr, N. Gao, G. J. Gerwig, P. D. Rick, and K. H. Gardner. 2003. Identification and biosynthesis of cyclic enterobacterial common antigen in Escherichia coli. J. Bacteriol. 185:1995-2004.
14. Fischer, S. H., and M. Debarbouille. 2002. Nitrogen source utilization and its regulation, p. 181-191. In A. Sonenshein, J. Hoch, and R. Losick (ed.), Bacillus subtilis and its Closest Relatives: from Genes to Cells. American Society for Microbiology, Washington DC.
15. Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick, K. McKenney, G. Sutton, W. FitzHugh, C. Fields, J. D. Gocayne, J. Scott, R. Shirley, L.-I. Liu, A. Glodek, J. M. Kelley, J. F. Weidman, C. A. Phillips, T. Spriggs, E. Hedblom, M. D. Cotton, T. R. Utterback, M. C. Hanna, D. T. Nguyen, D. M. Saudek, R. C. Brandon, L. D. Fine, J. L. Fritchman, J. L. Fuhrmann, N. S. M. Geoghagen, C. L. Gnehm, L. A. McDonald, K. V. Small, C. M. Fraser, H. O. Smith, and J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496-498, 507-512.
16. Garcia-Delgado, G. A., P. B. Little, and D. A. Barnum. 1977. A comparison of various Haemophilus somnus strains. Can. J. Comp. Med. 41:380-388.
17. Goss, T. J., A. Perez-Matos, and R. A. Bender. 2001. Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes. J. Bacteriol. 183:6607-6619.
18. Harrison, A., D. W. Dyer, A. Gillaspy, W. C. Ray, R. Mungur, M. B. Carson, H. Zhong, J. Gipson, M. Gipson, L. S. Johnson, L. Lewis, L. O. Bakaletz, and R. S. Munson Jr. 2005. Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype d, strain KW20. J. Bacteriol. 187:4627-4636.
19. Hartman, S. C. 1968. Glutaminase of Escherichia coli. I. Purification and general catalytic properties. J. Biol. Chem. 243:853-863.
20. Hood, D. W., A. D. Cox, W. W. Wakarchuk, M. Schur, E. K. Schweda, S. L. Walsh, M. E. Deadman, A. Martin, E. R. Moxon, and J. C. Richards. 2001. Genetic basis for expression of the major globotetraose-containing lipopolysaccharide from H. influenzae strain Rd (RM118). Glycobiol. 11:957-967.
21. Humphries, H. E., and N. J. High. 2002. The role of licA phase variation in the pathogenesis of invasive disease by Haemophilus influenzae type b. FEMS Immunol. Med. Microbiol. 34:221-230.
22. Kamionka, A., S. Parche, H. Nothaft, J. Siepelmeyer, K. Jahreis, and F. Titgemeyer. 2002. The phosphotransferase system of Streptomyces coelicolor. Eur. J. Biochem. 269:2143-2150.
23. Kikuchi, Y., H. Kojima, and T. Tanaka. 1999. Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli. FEMS Microbiol. Lett. 173:211-215.
24. Kilian, M., and E. L. Biberstein. 1984. Genus II. Haemophilus, p. 558-569. In N. R. Krieg and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 1. Williams & Wilkins, Baltimore.
25. Kobayashi, I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29:3742-3756.
26. Macfadyen, L. P., I. R. Dorocicz, J. Reizer, M. H. Saier Jr., and R. J. Redfield. 1996. Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system. Mol. Microbiol. 21:941-952.
27. Macfadyen, L. P., and R. J. Redfield. 1996. Life in mucus: sugar metabolism in Haemophilus influenzae. Res. Microbiol. 147:541-551.
28. Maskell, D. J., M. J. Szabo, M. E. Deadman, and E. R. Moxon. 1992. The gal locus from Haemophilus influenzae: cloning, sequencing and the use of gal mutants to study lipopolysaccharide. Mol. Microbiol. 6:3051-3063.
29. May, B. J., Q. Zhang, L. L. Li, M. L. Paustian, T. S. Whittam, and V. Kapur. 2001. Complete genomic sequence of Pasteurella multocida, Pm70 Proc. Natl. Acad. Sci. USA. 98:3460-3465.
30. Meier-Dieter, U., R. Starman, K. Barr, H. Mayer, and P. D. Rick. 1990. Biosynthesis of enterobacterial common antigen in Escherichia coli. Biochemical characterization of Tn10 insertion mutants defective in enterobacterial common antigen synthesis. J. Biol. Chem. 265:13490-13497.
31. Meier, U., and H. Mayer. 1985. Genetic location of genes encoding enterobacterial common antigen. J. Bacteriol. 163:756-762.
32. Merrick, M. J., and R. A. Edwards. 1995. Nitrogen control in bacteria. Microbiol. Rev. 59:604-622.
33. Palmer, K., A. Thornton, K. Fortney, A. Hood, R. J. Munson, and S. Spinola. 1998. Evaluation of an isogenic hemolysin-deficient mutant in the human model of Haemophilus ducreyi infection. J Infect Dis 178:191-199.
34. Postma, P. W., H. G. Keizer, and P. Koolwijk. 1986. Transport of trehalose in Salmonella typhimurium. J. Bacteriol. 168:1107-1111.
35. Postma, P. W., J. W. Lengeler, and G. R. Jacobson. 1993. Phosphoenolpyruvate:Carbohydrate Phosphotransferase Systems of Bacteria. Microbiol. Rev. 57:543-594.
36. Potter, M. D., and R. Y. Lo. 1996. Cloning and characterization of the galE locus of Pasteurella haemolytica A1. Infect. Immun. 64:855-860.
37. Purven, M., and T. Lagergard. 1992. Haemophilus ducreyi, a cytotoxin-producing bacterium. Infect. Immun. 60:1156-1162.
38. Reitzer, L. 2003. Nitrogen assimilation and global regulation in Escherichia coli. Annu. Rev. Microbiol. 57:155-176.
39. Richau, J. A., J. H. Leitao, and I. Sa-Correia. 2000. Enzymes leading to the nucleotide sugar precursors for exopolysaccharide synthesis in Burkholderia cepacia. Biochem. Biophys. Res. Commun. 276:71-76.
40. Siddaramppa, S., and T. J. Inzana. 2004. Haemophilus somnus virulence factors and resistance to host immunity. Anim. Health Res. Rev. 5:79-93.
41. Soksawatmaekhin, W., A. Kuraishi, K. Sakata, K. Kashiwagi, and K. Igarashi. 2004. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol. Microbiol. 51:1401-1412.
42. Sprenger, G. A. 1995. Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch. Microbiol. 164:324-330.
43. Tatusov, R. L., A. R. Mushegian, P. Bork, N. P. Brown, W. S. Hayes, M. Borodovsky, K. E. Rudd, and E. V. Koonin. 1996. Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr. Biol. 6:279-291.
44. Totten, P. A., D. V. Norn, and W. E. Stamm. 1995. Characterization of the hemolytic activity of Haemophilus ducreyi. Infect. Immun. 63:4409-4416.
45. VanWagoner, T. M., P. W. M. Whitby, D.J., T. W. Seale, and T. L. Stull. 2004. Characterization of three new competence-regulated operons in Haemophilus influenzae. J. Bacteriol. 186:6409-6421.
46. Watanabe, S., M. Hamano, H. Kakeshita, K. Bunai, S. Tojo, H. Yamaguchi, Y. Fujita, S. L. Wong, and K. Yamane. 2003. Mannitol-1-phosphate dehydrogenase (MtlD) is required for mannitol and glucitol assimilation in Bacillus subtilis: possible cooperation of mtl and gut operons. J. Bacteriol. 185:4816-4824.
47. Whalen, W. A., and C. M. Berg. 1982. Analysis of an avtA::Mu d1(Ap lac) mutant: metabolic role of transaminase C. J. Bacteriol. 150:739-746.
48. Won, J., and R. W. Griffith. 1993. Cloning and sequencing of the gene encoding a 31-kilodalton antigen of Haemophilus somnus. Infect. Immun. 61:2813-2821.
49. Wong, S. M., and B. J. Akerley. 2005. Environmental and genetic regulation of the phosphorylcholine epitope of Haemophilus influenzae lipooligosaccharide. Mol. Microbiol. 55:724-738.
Table S1. Candidate prophages and phage-related genes
Gene
|
H. somnus 129Pt
|
H. ducreyi 35000HP
|
H. influenzae Rd
|
Region 1*
|
|
|
|
conserved hypothetical protein; possible phage-related protein
|
HS_0423
|
no
|
no
|
phage integrase
|
HS_0424
|
no
|
no
|
hypothetical protein
|
HS_0425
|
no
|
no
|
possible phage DNA-polymerase or DNA-primase
|
HS_0426
|
no
|
no
|
conserved hypothetical protein; possible virulence-associated protein E
|
HS_0427
|
no
|
no
|
conserved hypothetical protein
|
HS_0428
|
no
|
no
|
conserved hypothetical protein
|
HS_0429
|
no
|
no
|
bcgIA
bifunctional protein: site-specific DNA-methyltransferase (adenine-specific); restriction enzyme, alpha subunit
|
HS_0430
|
maybe HD0293
|
no
|
bcgIB
restriction enzyme, beta subunit
|
HS_0431
|
maybe HD0294
|
no
|
bcgIB
restriction enzyme, beta subunit, C-terminal
|
HS_0432
|
no
|
no
|
conserved hypothetical protein
|
HS_0433
|
no
|
no
|
transposase fragment
|
HS_0434
|
no
|
no
|
transposase
|
HS_0486
|
no
|
no
|
HflK protein; phage lambda CII stabilizer; possible CII-specific protease
|
HS_0487
|
HD1809
|
HI0151
|
HflC protein; protease specific for phage lambda CII repressor
|
HS_0488
|
HD1808
|
HI0150
|
Region 2
|
|
|
|
phage integrase intA
|
HS_0519
|
no
|
no
|
hypothetical
|
HS_0520
|
no
|
no
|
hypothetical
|
HS_0521
|
no
|
no
|
conserved hypothetical; possible phage transcriptional regulator
|
HS_0522
|
no
|
no
|
conserved hypothetical
|
HS_0523
|
no
|
no
|
hypothetical
|
HS_0524
|
no
|
no
|
conserved hypothetical
|
HS_0525
|
no
|
no
|
hypothetical
|
HS_0526
|
no
|
no
|
hypothetical
|
HS_0527
|
no
|
no
|
conserved hypothetical
|
HS_0528
|
no
|
no
|
hypothetical
|
HS_0529
|
no
|
no
|
hypothetical
|
HS_0530
|
no
|
no
|
hypothetical
|
HS_0531
|
no
|
no
|
conserved hypothetical
|
HS_0532
|
no
|
no
|
phage DNA primase-like protein
|
HS_0533
|
no
|
no
|
conserved hypothetical
|
HS_0534
|
no
|
no
|
conserved hypothetical protein; possible transcriptional regulator
|
HS_0535
|
no
|
no
|
conserved hypothetical
|
HS_0536
|
no
|
no
|
conserved hypothetical
|
HS_0537
|
HD1614
|
no
|
conserved hypothetical
|
HS_0538
|
no
|
no
|
hypothetical
|
HS_0539
|
no
|
no
|
hypothetical
|
HS_0540
|
no
|
no
|
conserved hypothetical
|
HS_0541
|
no
|
no
|
Region 3
|
|
|
|
phage integrase
|
HS_0555
|
no
|
no
|
conserved hypothetical, possible restriction endonuclease
|
HS_0556
|
|
|
phage P1-related protein
|
HS_0557
|
no
|
no
|
enterobacteria phage P1
|
HS_0558
|
no
|
no
|
Region 4
|
|
|
|
hypothetical
|
HS_1331
|
no
|
no
|
hypothetical
|
HS_1332
|
no
|
no
|
phage terminase, small subunit
|
HS_1333
|
no
|
no
|
conserved hypothetical protein; possible terminase small subunit
|
HS_1334
|
no
|
HI1411
|
conserved hypothetical protein; possible prophage CP4-57 regulatory protein
|
HS_1335
|
no
|
no
|
hypothetical
|
HS_1336
|
no
|
no
|
integrase
|
HS_1337
|
no
|
no
|
Region 5
|
|
|
|
conserved hypothetical proteins and Haemophilus-specific proteins, uncharacterized
|
HS_1365 to HS_1371
|
|
|
conserved hypothetical protein; possible phage-related protein
|
HS_1372
|
no
|
no
|
conserved hypothetical protein; possible phage-related tail fiber protein
|
HS_1372
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1373
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1374
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1375
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1376
|
no
|
no
|
conserved hypothetical protein might be a coat protein
|
HS_1377
|
no
|
no
|
conserved hypothetical protein
|
HS_1378
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1379
|
no
|
no
|
possible transcription regulator
|
HS_1380
|
no
|
no
|
conserved hypothetical protein
|
HS_1381
|
no
|
no
|
conserved hypothetical protein; possible phage-related protein
|
HS_1382
|
no
|
HI1412
|
hypothetical protein
|
HS_1383
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1384
|
no
|
no
|
conserved hypothetical protein (possible phage terminase)
|
HS_1385
|
no
|
no
|
conserved hypothetical protein; possible terminase small subunit
|
HS_1386
|
no
|
no
|
conserved hypothetical protein
|
HS_1387
|
no
|
no
|
lysozyme, possible phage-related lysozyme
|
HS_1388
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1389
|
no
|
no
|
transposase
|
HS_1390
|
no
|
no
|
transposase
|
HS_1391
|
no
|
no
|
conserved hypothetical protein
|
HS_1392
|
no
|
no
|
conserved hypothetical protein
|
HS_1393
|
no
|
HI1421
|
Bacteriophage Lambda NinG recombination protein
|
HS_1394
|
no
|
no
|
conserved hypothetical protein
|
HS_1395
|
no
|
no
|
conserved hypothetical protein
|
HS_1396
|
no
|
no
|
conserved hypothetical protein
|
HS_1397
|
no
|
no
|
conserved hypothetical protein; possible prophage antirepressor
|
HS_1398
|
no
|
HI1418
|
conserved hypothetical protein
|
HS_1399
|
no
|
no
|
conserved hypothetical protein; possible DNA methylase
|
HS_1400
|
no
|
no
|
conserved hypothetical protein; possible replication protein P
|
HS_1401
|
no
|
no
|
conserved hypothetical protein
|
HS_1402
|
no
|
no
|
conserved hypothetical protein
|
HS_1403
|
no
|
no
|
conserved hypothetical protein
|
HS_1404
|
no
|
no
|
conserved hypothetical protein
|
HS_1405
|
no
|
no
|
conserved hypothetical protein; possible repressor protein
|
HS_1406
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1407
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1408
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1409
|
no
|
no
|
Haemophilus-specific protein, uncharacterized
|
HS_1410
|
no
|
no
|
hypothetical protein
|
HS_1411
|
no
|
no
|
Haemophilus -specific protein, uncharacterized
|
HS_1412
|
no
|
no
|
conserved hypothetical protein
|
HS_1413
|
no
|
no
|
hypothetical protein
|
HS_1414
|
no
|
no
|
conserved hypothetical protein; possible phage-related protein
|
HS_1415
|
no
|
no
|
Haemophilus -specific protein, uncharacterized
|
HS_1416
|
no
|
no
|
Haemophilus -specific protein, uncharacterized
|
HS_1417
|
no
|
no
|
Haemophilus -specific protein, uncharacterized
|
HS_1418
|
no
|
no
|
conserved hypothetical protein; possible phage recombinase
|
HS_1419
|
no
|
no
|
conserved hypothetical protein
|
HS_1420
|
no
|
no
|
conserved hypothetical protein
|
HS_1421
|
no
|
no
|
DNA-cytosine methyltransferase
|
HS_1422
|
no
|
no
|
Haemophilus -specific protein, uncharacterized
|
HS_1423
|
no
|
no
|
conserved hypothetical protein; possible transcriptional regulator
|
HS_1424
|
no
|
no
|
integrase
|
HS_1425
|
no
|
no
|
Share with your friends: |