Supplemental Material Carbohydrate utilization



Download 0.98 Mb.
Page4/13
Date05.08.2017
Size0.98 Mb.
#26116
1   2   3   4   5   6   7   8   9   ...   13

Exopolysaccharide


H. somnus produces an exopolysaccharide that contains mannose and galactose, whose production is upregulated when the bacteria are grown anaerobically and in high salt (T.J. Inzana, A. Cox, and G. Glindemann, Abstr. 102nd General Meeting of the American Society for Microbiology, abstr. Z-26, 2002) (40). We found in H. somnus 129Pt all but one of the genes involved in the pathways leading to GDP-D-mannose and GDP-D-galactose (Table S16), which are incorporated into the exopolysaccharide of Burkholderia cepacia (39). The genes necessary for GDP-D-galactose synthesis included phosphoglucomutase (HS_0730), UDP-glucose pyrophosphorylase (galU; HS_1117) and UDP-glucose epimerase (galE; HS_0789). For GDP-D-mannose synthesis, the genes that were present in H. somnus 129Pt included phosphoglucose isomerase (pgi; HS_0938), phosphomannose isomerase/mannose-6-phosphate isomerase (manA; HS_0605) and phosphomannomutase (manB; HS_1118 and HS_1670). Missing from H. somnus 129Pt was the manC gene encoding GDP-D-mannose-pyrophosphorylase, which catalyzes the last step in the formation of GDP-D-mannose, the conversion of mannose-1-phosphate to GDP-D-mannose.

Haemophilus-specific uptake sequences


The H. influenzae DNA uptake signal sequence is overrepresented in H. ducreyi and H. somnus (2). Bakkali et al. (2) report 41 Haemophilus-specific uptake sequences (hUSs) in H. ducreyi, most of which cluster in 2 islands of bacteriophage genes. We found the H. influenzae consensus of “AAGTGCGGT” (and its reverse complement “ACCGCACTT”) in 37 locations throughout the H. ducreyi 35000HP genome, and in agreement with the previous report, most of these were in areas containing bacteriophage genes. In addition, 32 (87%) of the consensus sequence locations in H. ducreyi 35000HP were in CDSs. Bakkali et al. (2) also reported that the unfinished sequence of H. somnus 129Pt has 1205 hUSs. We found that the finished genome sequence of H. somnus 129Pt had approximately 1244 potential hUSs. 62% (776) of these sites were within coding sequences and the rest were in intergenic regions. H. somnus 129Pt, H. ducreyi 35000HP and H. influenzae Rd all had genes involved in DNA uptake and transformation (11, 12, 45)(Table S13).
Restriction modification systems

As shown in Table S15, H. somnus 129Pt had genes encoding components of type I and the BcgI restriction-modification systems. H. ducreyi 35000HP had one gene encoding a possible type I methytransferase protein(HD0914), as well as genes encoding a type III system and possibly the BcgI system. H. influenzae Rd had genes encoding components of type I, II and III systems, but not BcgI. In terms of type I systems, H. somnus 129Pt had hsdS (HS_0556) and an hsdR gene (HS_0559) that was also present in H. influenzae Rd (HI1285). H. somnus 129Pt had a second hsdS (HS_0560), but not hsdM. H. influenzae Rd had one complete type I system composed of the genes HI1285 – HI1287 (hsdR, hsdS and hsdM). Another type I system in H. influenzae Rd consisted of HI0215 (hsdM, which contained a frameshift), HI0216 (hsdS) and hsdR (HI0218). Neither H. somnus 129Pt nor H. ducreyi 35000HP had any type II system genes. H. influenzae Rd had three complete type II systems, encoded by HI0512 and HI0513, HI1040 and HI1041, HI1393 and HI1392. H. somnus 129Pt did not have any type III restriction-modification system genes. H. influenzae Rd had a type III methylase gene (HI1056), while H. ducreyi 35000HP had a complete type III system (HD1690 to HD1693).

There is evidence supporting the hypothesis that restriction modification systems may move between and within genomes and may cause evolutionary changes in genomes (25). This evidence includes observations of the proximity of mobile genetic elements to restriction modification gene complexes. Our results indicated that all of the restriction modification system gene complexes in H. somnus 129Pt were in the vicinity of mobile elements, including putative prophage regions and transposases (Table 15). Also, as the H. influenzae DNA uptake signal sequence is overrepresented in H. somnus (2), mobile elements may not be necessary for the movement of restriction modification gene complexes. Several of the restriction-modification genes either contain the H. influenzae DNA uptake signal sequence or are close to H. influenzae DNA uptake signal sequences, so they may have been acquired by DNA uptake.

REFERENCES


1. Andre, A., W. Maccheroni, F. Doignon, M. Garnier, and J. Renaudin. 2003. Glucose and trehalose PTS permeases of Spiroplasma citri probably share a single IIA domain, enabling the spiroplasma to adapt quickly to carbohydrate changes in its environment. Microbiology 149:2687-2696.

2. Bakkali, M., T. Y. Chen, H. C. Lee, and R. J. Redfield. 2004. Evolutionary stability of DNA uptake signal sequences in the Pasteurellaceae. Proc. Natl. Acad. Sci. USA. 101:4513-4518.

3. Bell, A. W., S. D. Buckel, J. M. Groarke, J. N. Hope, D. H. Kingsley, and M. A. Hermodson. 1986. The nucleotide sequences of the rbsD, rbsA, and rbsC genes of Escherichia coli K12. J. Biol. Chem. 261:7652-7658.

4. Binet, M. R., and O. M. Bouvet. 1998. Transport of glucose by a phosphoenolpyruvate:mannose phosphotransferase system in Pasteurella multocida. Res. Microbiol. 149:83-94.

5. Boos, W., and H. Shuman. 1998. Maltose/Maltodextrin System of Escherichia coli:Transport, Metabolism, and Regulation. Microbiol. Mol. Biol. Rev. 62:204-229.

6. Bozue, J. A., M. V. Tullius, J. Wang, B. W. Gibson, and R. S. Munson Jr. 1999. Haemophilus ducreyi produces a novel sialyltransferase. Identification of the sialyltransferase gene and construction of mutants deficient in the production of the sialic acid-containing glycoform of the lipooligosaccharide. J. Biol. Chem. 274:4106-4114.

7. Brenchley, J. E., M. J. Prival, and B. Magasanik. 1973. Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J. Biol. Chem. 248:6122-6128.

8. Caspi, R., H. Foerster, C. A. Fulcher, R. Hopkinson, J. Ingraham, P. Kaipa, M. Krummenacker, S. Paley, J. Pick, S. Y. Rhee, C. Tissier, P. Zhang, and P. D. Karp. 2006. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 34:D511-D516.

9. Doten, R. C., and R. P. Mortlock. 1985. Characterization of xylitol-utilizing mutants of Erwinia uredovora. J. Bacteriol. 161:529-533.

10. Doten, R. C., and R. P. Mortlock. 1985. Production of D- and L-xylulose by mutants of Klebsiella pneumoniae and Erwinia uredovora. Appl. Environ. Microbiol. 49:158-162.

11. Dougherty, B. A., and H. O. Smith. 1999. Identification of Haemophilus influenzae Rd transformation genes using cassette mutagenesis. Microbiology 145:401-409.

12. Dubnau, D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53:217-244.

13. Erbel, P. J., K. Barr, N. Gao, G. J. Gerwig, P. D. Rick, and K. H. Gardner. 2003. Identification and biosynthesis of cyclic enterobacterial common antigen in Escherichia coli. J. Bacteriol. 185:1995-2004.

14. Fischer, S. H., and M. Debarbouille. 2002. Nitrogen source utilization and its regulation, p. 181-191. In A. Sonenshein, J. Hoch, and R. Losick (ed.), Bacillus subtilis and its Closest Relatives: from Genes to Cells. American Society for Microbiology, Washington DC.

15. Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick, K. McKenney, G. Sutton, W. FitzHugh, C. Fields, J. D. Gocayne, J. Scott, R. Shirley, L.-I. Liu, A. Glodek, J. M. Kelley, J. F. Weidman, C. A. Phillips, T. Spriggs, E. Hedblom, M. D. Cotton, T. R. Utterback, M. C. Hanna, D. T. Nguyen, D. M. Saudek, R. C. Brandon, L. D. Fine, J. L. Fritchman, J. L. Fuhrmann, N. S. M. Geoghagen, C. L. Gnehm, L. A. McDonald, K. V. Small, C. M. Fraser, H. O. Smith, and J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496-498, 507-512.

16. Garcia-Delgado, G. A., P. B. Little, and D. A. Barnum. 1977. A comparison of various Haemophilus somnus strains. Can. J. Comp. Med. 41:380-388.

17. Goss, T. J., A. Perez-Matos, and R. A. Bender. 2001. Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes. J. Bacteriol. 183:6607-6619.

18. Harrison, A., D. W. Dyer, A. Gillaspy, W. C. Ray, R. Mungur, M. B. Carson, H. Zhong, J. Gipson, M. Gipson, L. S. Johnson, L. Lewis, L. O. Bakaletz, and R. S. Munson Jr. 2005. Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype d, strain KW20. J. Bacteriol. 187:4627-4636.

19. Hartman, S. C. 1968. Glutaminase of Escherichia coli. I. Purification and general catalytic properties. J. Biol. Chem. 243:853-863.

20. Hood, D. W., A. D. Cox, W. W. Wakarchuk, M. Schur, E. K. Schweda, S. L. Walsh, M. E. Deadman, A. Martin, E. R. Moxon, and J. C. Richards. 2001. Genetic basis for expression of the major globotetraose-containing lipopolysaccharide from H. influenzae strain Rd (RM118). Glycobiol. 11:957-967.

21. Humphries, H. E., and N. J. High. 2002. The role of licA phase variation in the pathogenesis of invasive disease by Haemophilus influenzae type b. FEMS Immunol. Med. Microbiol. 34:221-230.

22. Kamionka, A., S. Parche, H. Nothaft, J. Siepelmeyer, K. Jahreis, and F. Titgemeyer. 2002. The phosphotransferase system of Streptomyces coelicolor. Eur. J. Biochem. 269:2143-2150.

23. Kikuchi, Y., H. Kojima, and T. Tanaka. 1999. Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli. FEMS Microbiol. Lett. 173:211-215.

24. Kilian, M., and E. L. Biberstein. 1984. Genus II. Haemophilus, p. 558-569. In N. R. Krieg and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 1. Williams & Wilkins, Baltimore.

25. Kobayashi, I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29:3742-3756.

26. Macfadyen, L. P., I. R. Dorocicz, J. Reizer, M. H. Saier Jr., and R. J. Redfield. 1996. Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system. Mol. Microbiol. 21:941-952.

27. Macfadyen, L. P., and R. J. Redfield. 1996. Life in mucus: sugar metabolism in Haemophilus influenzae. Res. Microbiol. 147:541-551.

28. Maskell, D. J., M. J. Szabo, M. E. Deadman, and E. R. Moxon. 1992. The gal locus from Haemophilus influenzae: cloning, sequencing and the use of gal mutants to study lipopolysaccharide. Mol. Microbiol. 6:3051-3063.

29. May, B. J., Q. Zhang, L. L. Li, M. L. Paustian, T. S. Whittam, and V. Kapur. 2001. Complete genomic sequence of Pasteurella multocida, Pm70 Proc. Natl. Acad. Sci. USA. 98:3460-3465.

30. Meier-Dieter, U., R. Starman, K. Barr, H. Mayer, and P. D. Rick. 1990. Biosynthesis of enterobacterial common antigen in Escherichia coli. Biochemical characterization of Tn10 insertion mutants defective in enterobacterial common antigen synthesis. J. Biol. Chem. 265:13490-13497.

31. Meier, U., and H. Mayer. 1985. Genetic location of genes encoding enterobacterial common antigen. J. Bacteriol. 163:756-762.

32. Merrick, M. J., and R. A. Edwards. 1995. Nitrogen control in bacteria. Microbiol. Rev. 59:604-622.

33. Palmer, K., A. Thornton, K. Fortney, A. Hood, R. J. Munson, and S. Spinola. 1998. Evaluation of an isogenic hemolysin-deficient mutant in the human model of Haemophilus ducreyi infection. J Infect Dis 178:191-199.

34. Postma, P. W., H. G. Keizer, and P. Koolwijk. 1986. Transport of trehalose in Salmonella typhimurium. J. Bacteriol. 168:1107-1111.

35. Postma, P. W., J. W. Lengeler, and G. R. Jacobson. 1993. Phosphoenolpyruvate:Carbohydrate Phosphotransferase Systems of Bacteria. Microbiol. Rev. 57:543-594.

36. Potter, M. D., and R. Y. Lo. 1996. Cloning and characterization of the galE locus of Pasteurella haemolytica A1. Infect. Immun. 64:855-860.

37. Purven, M., and T. Lagergard. 1992. Haemophilus ducreyi, a cytotoxin-producing bacterium. Infect. Immun. 60:1156-1162.

38. Reitzer, L. 2003. Nitrogen assimilation and global regulation in Escherichia coli. Annu. Rev. Microbiol. 57:155-176.

39. Richau, J. A., J. H. Leitao, and I. Sa-Correia. 2000. Enzymes leading to the nucleotide sugar precursors for exopolysaccharide synthesis in Burkholderia cepacia. Biochem. Biophys. Res. Commun. 276:71-76.

40. Siddaramppa, S., and T. J. Inzana. 2004. Haemophilus somnus virulence factors and resistance to host immunity. Anim. Health Res. Rev. 5:79-93.

41. Soksawatmaekhin, W., A. Kuraishi, K. Sakata, K. Kashiwagi, and K. Igarashi. 2004. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol. Microbiol. 51:1401-1412.

42. Sprenger, G. A. 1995. Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch. Microbiol. 164:324-330.

43. Tatusov, R. L., A. R. Mushegian, P. Bork, N. P. Brown, W. S. Hayes, M. Borodovsky, K. E. Rudd, and E. V. Koonin. 1996. Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr. Biol. 6:279-291.

44. Totten, P. A., D. V. Norn, and W. E. Stamm. 1995. Characterization of the hemolytic activity of Haemophilus ducreyi. Infect. Immun. 63:4409-4416.

45. VanWagoner, T. M., P. W. M. Whitby, D.J., T. W. Seale, and T. L. Stull. 2004. Characterization of three new competence-regulated operons in Haemophilus influenzae. J. Bacteriol. 186:6409-6421.

46. Watanabe, S., M. Hamano, H. Kakeshita, K. Bunai, S. Tojo, H. Yamaguchi, Y. Fujita, S. L. Wong, and K. Yamane. 2003. Mannitol-1-phosphate dehydrogenase (MtlD) is required for mannitol and glucitol assimilation in Bacillus subtilis: possible cooperation of mtl and gut operons. J. Bacteriol. 185:4816-4824.

47. Whalen, W. A., and C. M. Berg. 1982. Analysis of an avtA::Mu d1(Ap lac) mutant: metabolic role of transaminase C. J. Bacteriol. 150:739-746.

48. Won, J., and R. W. Griffith. 1993. Cloning and sequencing of the gene encoding a 31-kilodalton antigen of Haemophilus somnus. Infect. Immun. 61:2813-2821.

49. Wong, S. M., and B. J. Akerley. 2005. Environmental and genetic regulation of the phosphorylcholine epitope of Haemophilus influenzae lipooligosaccharide. Mol. Microbiol. 55:724-738.

Table S1. Candidate prophages and phage-related genes

Gene

H. somnus 129Pt

H. ducreyi 35000HP

H. influenzae Rd

Region 1*










conserved hypothetical protein; possible phage-related protein

HS_0423

no

no

phage integrase

HS_0424

no

no

hypothetical protein

HS_0425

no

no

possible phage DNA-polymerase or DNA-primase

HS_0426

no

no

conserved hypothetical protein; possible virulence-associated protein E

HS_0427

no

no

conserved hypothetical protein

HS_0428

no

no

conserved hypothetical protein

HS_0429

no

no

bcgIA

bifunctional protein: site-specific DNA-methyltransferase (adenine-specific); restriction enzyme, alpha subunit



HS_0430

maybe HD0293

no

bcgIB

restriction enzyme, beta subunit



HS_0431

maybe HD0294

no

bcgIB

restriction enzyme, beta subunit, C-terminal



HS_0432

no

no

conserved hypothetical protein

HS_0433

no

no

transposase fragment

HS_0434

no

no

transposase

HS_0486

no

no

HflK protein; phage lambda CII stabilizer; possible CII-specific protease

HS_0487

HD1809

HI0151

HflC protein; protease specific for phage lambda CII repressor

HS_0488

HD1808

HI0150

Region 2










phage integrase intA

HS_0519

no

no

hypothetical

HS_0520

no

no

hypothetical

HS_0521

no

no

conserved hypothetical; possible phage transcriptional regulator

HS_0522

no

no

conserved hypothetical

HS_0523

no

no

hypothetical

HS_0524

no

no

conserved hypothetical

HS_0525

no

no

hypothetical

HS_0526

no

no

hypothetical

HS_0527

no

no

conserved hypothetical

HS_0528

no

no

hypothetical

HS_0529

no

no

hypothetical

HS_0530

no

no

hypothetical

HS_0531

no

no

conserved hypothetical

HS_0532

no

no

phage DNA primase-like protein

HS_0533

no

no

conserved hypothetical

HS_0534

no

no

conserved hypothetical protein; possible transcriptional regulator

HS_0535

no

no

conserved hypothetical

HS_0536

no

no

conserved hypothetical

HS_0537

HD1614

no

conserved hypothetical

HS_0538

no

no

hypothetical

HS_0539

no

no

hypothetical

HS_0540

no

no

conserved hypothetical

HS_0541

no

no

Region 3










phage integrase

HS_0555

no

no

conserved hypothetical, possible restriction endonuclease

HS_0556







phage P1-related protein

HS_0557

no

no

enterobacteria phage P1

HS_0558

no

no

Region 4










hypothetical

HS_1331

no

no

hypothetical

HS_1332

no

no

phage terminase, small subunit

HS_1333

no

no

conserved hypothetical protein; possible terminase small subunit

HS_1334

no

HI1411


conserved hypothetical protein; possible prophage CP4-57 regulatory protein

HS_1335

no

no

hypothetical

HS_1336

no

no

integrase

HS_1337

no

no

Region 5










conserved hypothetical proteins and Haemophilus-specific proteins, uncharacterized

HS_1365 to HS_1371







conserved hypothetical protein; possible phage-related protein

HS_1372

no

no

conserved hypothetical protein; possible phage-related tail fiber protein

HS_1372

no

no

Haemophilus-specific protein, uncharacterized

HS_1373

no

no

Haemophilus-specific protein, uncharacterized

HS_1374

no

no

Haemophilus-specific protein, uncharacterized

HS_1375

no

no

Haemophilus-specific protein, uncharacterized

HS_1376

no

no

conserved hypothetical protein might be a coat protein

HS_1377

no

no

conserved hypothetical protein

HS_1378

no

no

Haemophilus-specific protein, uncharacterized

HS_1379

no

no

possible transcription regulator

HS_1380

no

no

conserved hypothetical protein

HS_1381

no

no

conserved hypothetical protein; possible phage-related protein

HS_1382

no

HI1412


hypothetical protein

HS_1383

no

no

Haemophilus-specific protein, uncharacterized

HS_1384

no

no

conserved hypothetical protein (possible phage terminase)

HS_1385

no

no

conserved hypothetical protein; possible terminase small subunit

HS_1386

no

no

conserved hypothetical protein

HS_1387

no

no

lysozyme, possible phage-related lysozyme

HS_1388

no

no

Haemophilus-specific protein, uncharacterized

HS_1389

no

no

transposase

HS_1390

no

no

transposase

HS_1391

no

no

conserved hypothetical protein

HS_1392

no

no

conserved hypothetical protein

HS_1393

no

HI1421

Bacteriophage Lambda NinG recombination protein

HS_1394

no

no

conserved hypothetical protein

HS_1395

no

no

conserved hypothetical protein

HS_1396

no

no

conserved hypothetical protein

HS_1397

no

no

conserved hypothetical protein; possible prophage antirepressor

HS_1398

no

HI1418

conserved hypothetical protein

HS_1399

no

no

conserved hypothetical protein; possible DNA methylase

HS_1400

no

no

conserved hypothetical protein; possible replication protein P

HS_1401

no

no

conserved hypothetical protein

HS_1402

no

no

conserved hypothetical protein

HS_1403

no

no

conserved hypothetical protein

HS_1404

no

no

conserved hypothetical protein

HS_1405

no

no

conserved hypothetical protein; possible repressor protein

HS_1406

no

no

Haemophilus-specific protein, uncharacterized

HS_1407

no

no

Haemophilus-specific protein, uncharacterized

HS_1408

no

no

Haemophilus-specific protein, uncharacterized

HS_1409

no

no

Haemophilus-specific protein, uncharacterized

HS_1410

no

no

hypothetical protein

HS_1411

no

no

Haemophilus -specific protein, uncharacterized

HS_1412

no

no

conserved hypothetical protein

HS_1413

no

no

hypothetical protein

HS_1414

no

no

conserved hypothetical protein; possible phage-related protein

HS_1415

no

no

Haemophilus -specific protein, uncharacterized

HS_1416

no

no

Haemophilus -specific protein, uncharacterized

HS_1417

no

no

Haemophilus -specific protein, uncharacterized

HS_1418

no

no

conserved hypothetical protein; possible phage recombinase

HS_1419

no

no

conserved hypothetical protein

HS_1420

no

no

conserved hypothetical protein

HS_1421

no

no

DNA-cytosine methyltransferase

HS_1422

no

no

Haemophilus -specific protein, uncharacterized

HS_1423

no

no

conserved hypothetical protein; possible transcriptional regulator

HS_1424

no

no

integrase

HS_1425

no

no


Download 0.98 Mb.

Share with your friends:
1   2   3   4   5   6   7   8   9   ...   13




The database is protected by copyright ©ininet.org 2024
send message

    Main page