Written by: Manu Meel and Isaiah Sirois #mags lab



Download 0.65 Mb.
Page11/34
Date19.10.2016
Size0.65 Mb.
#4521
1   ...   7   8   9   10   11   12   13   14   ...   34

Mars Scenario

1NC

Drone tech is key to Mars colonization in the short-term


Hernandez, 15

Vittorio Hernandez, reporter for the International Business Times, citing NASA officials, “Drone Technology Makes Trip to Mars Possible,” 7/3/15, http://www.ibtimes.com.au/drone-technology-makes-trip-mars-possible-1454207 // IS



A flight to Mars may be possible as NASA is building a drone airplane to send to the Red Planet by 2024, NBC reported. Due to new technologies, NASA is developing a small, lightweight craft which is built to perform aerial surveys and locate landing areas.

A prototype of the Preliminary Research Aerodynamic Design to Land on Mars, or Prandtl-m, according to the report, will be launched via a high altitude balloon by the end of 2015. The Prandtl–m will then be let go at a 100,000 feet altitude to replicate the flight conditions at the Red Planet.

The aircraft would be part of the ballast that would be ejected from the aeroshell that takes the Mars rover to the planet," Al Bowers, NASA Armstrong chief scientist and Prandtl-m programme manager, said in a news statement.

It would be able to deploy and fly in the Martian atmosphere and glide down and land. The Prandtl-m could overfly some of the proposed landing sites for a future astronaut mission and send back to Earth very detailed high resolution photographic map images that could tell scientists about the suitability of those landing sites," he said.

The drone technology is only one of the few plans to eventually send humans to Mars. The planet is the fourth one from the Sun, and because research have shown that it has the similar season cycle to those of the Earth, the possibility of sending humans to Mars is greater than the other planets in the solar system.

Orbiters and rovers have been sent to Mars since the 1950s, which have been studying the planet’s atmosphere. In fact, several projects are being conceptualised to send humans to Mars by 2025.



The ever-evolving technologies will make human mission to Mars a possibility. NASA’s project to send unmanned aerial vehicle, or UAV, to the planet can help further research and determine suitable landing sites for the mission.

Short-term colonization is key to avert extinction


Schulze-Makuch & Davies 10

Dirk Schulze-Makuch and Paul Davies, *Ph.D., School of Earth and Environmental Sciences, Washington State University, **Ph.D., Beyond Center, Arizona State University; “To Boldly Go: A One-Way Human Mission to Mars,” Journal of Cosmology, vol.12, October-November, 2010, http://journalofcosmology.com/Mars108.html // IS



The exploration of Mars has been a priority for the space programs of several nations for decades, yet the prospect of a manned [staffed] expedition continually recedes in the face of daunting and well-recognized challenges. The long travel time to Mars in zero gravity and high radiation conditions would impose a serious health burden on the astronauts. The costs of developing the launch vehicle and assembling the large amount of equipment needed for the astronauts to survive the journey and their long sojourn on the Martian surface, together with a need to send all the fuel and supplies for a return journey make a manned Mars expedition at least an order of magnitude more expensive than the Apollo program.

In our view, however, many of these human and financial problems would be ameliorated by a one-way mission. It is important to realize that this is not a "suicide mission." The astronauts would go to Mars with the intention of staying for the rest of their lives, as trailblazers of a permanent human Mars colony. They would be resupplied periodically from Earth, and eventually develop some "home grown" industry such as food production and mineral/chemical processing (Zubrin and Baker 1992; Zubrin and Wagner 1997). Their role would be to establish a "base camp" to which more colonists would eventually be sent, and to carry out important scientific and technological projects meanwhile. Of course, the life expectancy of the astronauts would be substantially reduced, but that would also be the case for a return mission. The riskiest part of space exploration is take-off and landing, followed by the exposure to space conditions. Both risk factors would be halved in a one-way mission, and traded for the rigors of life in a cramped and hostile environment away from sophisticated medical equipment. On the financial front, abandoning the need to send the fuel and supplies for the return journey would cut costs dramatically, arguably by about 80 percent. Furthermore, once a Mars base has been established, it would be politically much easier to find the funding for sustaining it over the long term than to mount a hugely expensive return mission.

There are several reasons that motivate the establishment of a permanent Mars colony. We are a vulnerable species living in a part of the galaxy where cosmic events such as major asteroid and comet impacts and supernova explosions pose a significant threat to life on Earth, especially to human life. There are also more immediate threats to our culture, if not our survival as a species. These include global pandemics, nuclear or biological warfare, runaway global warming, sudden ecological collapse and supervolcanoes (Rees 2004). Thus, the colonization of other worlds is a must if the human species is to survive for the long term. The first potential colonization targets would be asteroids, the Moon and Mars. The Moon is the closest object and does provide some shelter (e.g., lava tube caves), but in all other respects falls short compared to the variety of resources available on Mars. The latter is true for asteroids as well. Mars is by far the most promising for sustained colonization and development, because it is similar in many respects to Earth and, crucially, possesses a moderate surface gravity, an atmosphere, abundant water and carbon dioxide, together with a range of essential minerals. Mars is our second closest planetary neighbor (after Venus) and a trip to Mars at the most favorable launch option takes about six months with current chemical rocket technology.

2NC – Mars key

Mars is the only thing we’ll have after Earth


Zubrin 96

Robert Zubrin, former Chairman of the National Space Society, and President of the Mars Society, “The Case for Colonizing Mars,” Ad Astra, July/August, http://nss.org/settlement/mars/zubrin-colonize.html // IS



Among extraterrestrial bodies in our solar system, Mars is singular in that it possesses all the raw materials required to support not only life, but a new branch of human civilization. This uniqueness is illustrated most clearly if we contrast Mars with the Earth's Moon, the most frequently cited alternative location for extraterrestrial human colonization. In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen and oxygen, all in biologically readily accessible forms such as carbon dioxide gas, nitrogen gas, and water ice and permafrost. Carbon, nitrogen, and hydrogen are only present on the Moon in parts per million quantities, much like gold in seawater. Oxygen is abundant on the Moon, but only in tightly bound oxides such as silicon dioxide (SiO2), ferrous oxide (Fe2O3), magnesium oxide (MgO), and aluminum oxide (Al2O3), which require very high energy processes to reduce. Current knowledge indicates that if Mars were smooth and all its ice and permafrost melted into liquid water, the entire planet would be covered with an ocean over 100 meters deep. This contrasts strongly with the Moon, which is so dry that if concrete were found there, Lunar colonists would mine it to get the water out. Thus, if plants could be grown in greenhouses on the Moon (an unlikely proposition, as we've seen) most of their biomass material would have to be imported. The Moon is also deficient in about half the metals of interest to industrial society (copper, for example), as well as many other elements of interest such as sulfur and phosphorus. Mars has every required element in abundance. Moreover, on Mars, as on Earth, hydrologic and volcanic processes have occurred that are likely to have consolidated various elements into local concentrations of high-grade mineral ore. Indeed, the geologic history of Mars has been compared to that of Africa, with very optimistic inferences as to its mineral wealth implied as a corollary. In contrast, the Moon has had virtually no history of water or volcanic action, with the result that it is basically composed of trash rocks with very little differentiation into ores that represent useful concentrations of anything interesting. You can generate power on either the Moon or Mars with solar panels, and here the advantages of the Moon's clearer skies and closer proximity to the Sun than Mars roughly balances the disadvantage of large energy storage requirements created by the Moon's 28-day light-dark cycle. But if you wish to manufacture solar panels, so as to create a self-expanding power base, Mars holds an enormous advantage, as only Mars possesses the large supplies of carbon and hydrogen needed to produce the pure silicon required for producing photovoltaic panels and other electronics. In addition, Mars has the potential for wind-generated power while the Moon clearly does not. But both solar and wind offer relatively modest power potential — tens or at most hundreds of kilowatts here or there. To create a vibrant civilization you need a richer power base, and this Mars has both in the short and medium term in the form of its geothermal power resources, which offer potential for large numbers of locally created electricity generating stations in the 10 MW (10,000 kilowatt) class. In the long-term, Mars will enjoy a power-rich economy based upon exploitation of its large domestic resources of deuterium fuel for fusion reactors. Deuterium is five times more common on Mars than it is on Earth, and tens of thousands of times more common on Mars than on the Moon. But on Mars there is an atmosphere thick enough to protect crops grown on the surface from solar flare. Therefore, thin-walled inflatable plastic greenhouses protected by unpressurized UV-resistant hard-plastic shield domes can be used to rapidly create cropland on the surface. Even without the problems of solar flares and month-long diurnal cycle, such simple greenhouses would be impractical on the Moon as they would create unbearably high temperatures. On Mars, in contrast, the strong greenhouse effect created by such domes would be precisely what is necessary to produce a temperate climate inside. Such domes up to 50 meters in diameter are light enough to be transported from Earth initially, and later on they can be manufactured on Mars out of indigenous materials. Because all the resources to make plastics exist on Mars, networks of such 50- to 100-meter domes couldbe rapidly manufactured and deployed, opening up large areas of the surface to both shirtsleeve human habitation and agriculture. That's just the beginning, because it will eventually be possible for humans to substantially thicken Mars' atmosphere by forcing the regolith to outgas its contents through a deliberate program of artificially induced global warming. Once that has been accomplished, the habitation domes could be virtually any size, as they would not have to sustain a pressure differential between their interior and exterior. In fact, once that has been done, it will be possible to raise specially bred crops outside the domes. The point to be made is that unlike colonists on any known extraterrestrial body, Martian colonists will be able to live on the surface, not in tunnels, and move about freely and grow crops in the light of day. Mars is a place where humans can live and multiply to large numbers, supporting themselves with products of every description made out of indigenous materials. Mars is thus a place where an actual civilization, not just a mining or scientific outpost, can be developed. And significantly for interplanetary commerce, Mars and Earth are the only two locations in the solar system where humans will be able to grow crops for export.


Download 0.65 Mb.

Share with your friends:
1   ...   7   8   9   10   11   12   13   14   ...   34




The database is protected by copyright ©ininet.org 2024
send message

    Main page