ZP OWER C ORPORATION PAGE OF 352 Z ERO P OINT E NERGY does not happen. It describes the characteristics of the particles and declares that they only jump back and forth between specific energy levels in the electron orbits. Since they cannot drop below the lowest energy level, they do not fall into the nucleus. Even the quantizing of the electron paths does not explain the physical background for their stability. Harold Puthoff, physicist at the Texas think tank, believes he has the answer again he sees the ZPE at work. According to his idea, electrons do radiate energy while orbiting the atomic nucleus, but they absorb an equal amount of energy from the electron fluctuations, and so the atom is saved from collapse. Writing in the New Scientist, Puthoff said, "The equilibrium between these two processes leads to the values for the parameters which define the fundamental energy condition. Therefore there exists a dynamic equilibrium in which the zero point energy stabilizes the electron in the its orbital condition. It appears that the stability of matter itself depends upon the fundamental ocean of the electromagnetic fluctuations" Also, Heisenberg's Uncertainty Principle appears in anew light. This principles states that it is impossible to determine all the conditions of a physical system at the same time, for example, the position and velocity of a particle. If the velocity of an electron is determined, its position remains unclear although a discrete particle, it appears smeared over a larger area. Only statistics helped quantum physicists out of their dilemma. This makes it possible at least to calculate the probability with which a particle with a certain energy can be found in a certain position. Fora longtime this indeterminacy was considered a characteristic of matter itself. Actually, it is the ZPE which causes the particles to tremble. Their exact position must therefore necessarily appear unclear, says Puthoff. The uncertainty principle is therefore a direct effect of vacuum fluctuations. Puthoff even has anew slant on gravitational theory. Einstein saw gravity as a warping of space caused by the mass of objects in space. Galaxies, stars, and planets cause depressions in 4 dimensional space, like marbles on a taughtly stretched rubber surface. If the marbles approach each other, they roll in the direction of the indentations caused by their weight. "This shows how gravity functions, but it doesn't explain the mechanism behind it" says the US physicist. Again, Puthoff's famous theory, as written up in the Physical Review, sees the power of the vacuum at work. As two bodies approach each other one will screen off the second from the radiation field of the ZPE coming from it's direction. And vice versa. Out of all the other directions these bodies continue under the influence of the pressure of the fluctuations. The result they move toward one another.