Background Information on Ilvaite

Download 64.19 Kb.
Size64.19 Kb.

Background Information on Ilvaite

Ilvaite is a mixed-valence Ca-Fe sorosilicate which was named for Ilva, the latin name of the Elba island, where the type locality (Capo Calamita) is located. In the older literature, ilvaite is also known as lievrite, due to its discoverer (M. Lelièvre, in 1802) and yenite (or jenite), in commemoration of the Jena battle (Lelièvre, 1807; Brongniart, 1807; Webster, 1828; Thomson, 1837; Dana, 1854). Although it is not a common mineral, it is has been described in a wide variety of geological environments (Table S1). However, the most typical occurrence of ilvaite is iron-rich skarns, where it uses to be associated to hedenbergite, andradite, magnetite, quartz and calcite.

The composition of ilvaite can be represented by the formula CaFe22+Fe3+Si2O8(OH) and its structure was first resolved by Belov & Mokeeva (1954) and later confirmed by Beran & Bittner (1972, 1974) and Haga & Takéuchi (1976). Fe2+ and Fe3+ ions occur in octahedral (A sites) double chains parallel to the c axis. Larger octahedral (B sites) containing only Fe2+ ions are attached above and below these chains, which are cross-linked to the calcium atoms (in seven-fold coordination) and dimer [Si2O7] groups (Herzenberg & Riley, 1969; Yamanaka & Takéuchi, 1979; Xuemin et al., 1988). At room temperature ilvaite has a monoclinic crystal structure (space group P21/a; Ghose et al., 1984; Schmidbauer et al.,

2005) but between 333 and 343 K it switches (crystallographic phase transition) into an

orthorhombic structure (space group Pnam; Ghose et al., 1985, 1989). It is well known that ilvaite becomes antiferromagnetic below 120 K (Yamanaka & Takéuchi, 1979; Coey et al., 1984; Ghose et al., 1984; Xuemin et al., 1988). It also undergoes magnetic phase transitions at 40 and 120 K (Coey et al., 1984; Ghosh et al., 1987) and a thermal phase transition between 300 and 400 K due to electron delocalization (Gerard & Grandjean, 1971; Grandjean & Gerard, 1975; Nolet & Burns, 1979; Evans & Amthauer, 1980; Litterst & Amthauer, 1984; Ghose et al., 1990; Güttlher et al., 1989). A summary of the studies aimed at characterizing different physical properties of ilvaite is given in Table S2.


Table S1. Occurrence of ilvaite in different geologic contexts and related minerals, according to a literature review. Mineral symbols according to recommendations of the Mineralogical Association of Canada (, except ilvaite (Ilv), howieite (Hw), deerite (De), julgoldite (Jul) and babingtonite (Bab).



Related minerals


Skarn and skarnoids

Bartholomé & Dimanche (1967), Bartholomé et al. (1968), Burt (1971b), Plimer & Ashley (1978), Verkaeren & Bartholomé (1979), Bratus (1979), Gole (1981), Kwak & Askins (1981), Einaudi et al. (1981), Galley et al. (1993), Kwak (1983), Meinert, (1984, 1987), Vivallo (1985), Pesquera & Velasco (1986), Tornos (1989), Delgado (1993), Capitani & Mellini (2000), Logan (2000), Franchini et al. (2002), Larsen & Dahlgren (2002), Damian (2003), Bonev et al. (2005), Simanenko (2006), Levresse et al. (2006)

Fac, Hd, Adr, Gru, Stp, Chl, Qtz, Cal, Mgt, Po, Ep, Py, Sp

Typically associated to retrograde stages replacing the Adr/Hd prograde assemblages

Alteration of mafic rocks and serpentinites

Wager et al. (1957), Ramdohr (1967), Dietrich (1972), Graesser (1975), Naslund et al. (1983), Barton & Bergen (1984), Agata & Adachi (1995), Larsen & Dahlgren (2002)

Fac, Cum, Chl, Bt, Prh, Ep, Pl, Srp, Qtz, Cal

Fe-rich veins,

Cu-Ni ores associated to ultrabasic rocks

cited by Bartholomé & Dimanche (1967)


Lucchetti (1989)

granditic garnets, diopsidic Cpx, Chl, Amp, Mgt

Metarodingitic lenses within Atg-Srp schists

Metasomatism of alkaline igneous rocks

Soen & Sørensen (1964), Graser & Markl (2008)

Ab, Kfs, Adr (Adr44-Ad100) Ap, Ae

Endoskarns developed over persodic (agpaitic) magmatic rocks. Unusual Qtz-absent assemblages


Mücke (2003)

Gru, Ch, Stp

Mafic clots within granitic rocks

Hydrothermal/metasomatic alteration of volcanogenic massive sulfides

Plimer & Ashley (1978), Galley et al. (2000)

Hd, Adr, Fac, Mgt, Gru, Gre, Min, Stp

Associated to a Mgt-rich calcsilicate alteration

Iron-rich blueschists facies metamorphism

Muir-Wood (1982)

Hw, Rbk, Ae, Aug, Stp, De, Act

Sub-seafloor metalliferous sediments with calcsilicates (Atlantis II Deep, Red Sea)

Weiss et al. (1980), Zierenberg & Shanks (1983), Singer & Stoffers (1987), Ramboz et al. (1988)

Hem, Mgt, Grt, Cpx, Act, Vrm

Low temperature hydrothermal veins and cavities

Wise & Moller (1990)

Prh, Chl, Lmt, Qtz, Cal, Jul, Bab, Adr, Hem

Filled vugs in altered basalts. ~200 ºC and 50 MPa

Venus surface

Burns & Straub (1992)

Hypothetical occurrence

Table S2. Summary of studies involving ilvaite.



Optical properties

Beran (1980), Bonazzi et al. (2001)

Thermal behavior and spectrometry

Nolet & Burns (1979), Güttlher et al. (1989), Bonazzi & Bindi (1999, 2002)

Structural characterization

Belov & Mokeeva (1954), Bartholomé et al. (1968), Herzenberg & Riley (1969), Takéuchi et al. (1983),

Finger & Hazen (1987), Ghose et al. (1989), Ghazi-Bayat et al. (1993), Carrozzini (1994),

Bonazzi & Bindi (1999, 2002), Bonev (2005)

Isothermal compression

Finger & Hazen (1987), Ghazi-Bayat et al. (1993)

Isobaric thermal expansion

Robie et al. (1988)

Magnetic properties

Beran & Bittner (1974),Nolet (1978), Yamanaka & Takéuchi (1979), Coey et al. (1984), Xuemin et al. (1988),

Cesena et al. (1995), Fehr et al. (2005)

Electrical properties

Coey et al. (1984), Schmidbauer et al. (1998, 2005)


Gustafson (1974), Ghazi-Bayat et al. (1987), Ghazi-Bayat et al. (1989), Jenkins & Bozhilov (2003)

Thermodynamic properties

Robie et al. (1988)

Phase equilibria

Bartholomé & Dimanche (1967), Burt (1971a and c)

Stable isotopes fractionation factor

Yaqian & Jibao (1993)

References (supplement)

Agata, T. & Adachi, M. (1995): Ilvaite from a serpentinized peridotite in the Asama igneous complex, Mikabu greenstone belt, Sambagawa metamorphic terrain, central Japan. Mineral. Mag., 59, 489-496

Bartholomé, P. & Dimanche, F. (1967) : On the paragenesis of ilvaite in italian skarns. Ann. Soc. Géol. Belgique, 90, 533-565

―, Duchesne, J.C., van der Plas, L. (1968): Sur une forme monoclinique de l'ilvaite. Ann. Soc. Géol. Belgique, 90, 779-788

Barton, M. & Bergen, M.J. (1984): Secondary ilvaite in a dolerite dyke from Rogaland, SW Norway. Mineral. Mag., 48, 449-456

Belov, N.V. & Mokeeva, V.I. (1954): Kristallicheskaya struktura ilvaita. Trudy Inst. Kristallogr. Akad. Nauk. SSSR, 9, 47-102 (in Russian)

Beran, A. (1980): A reflected light investigation of ilvaite. Miner. Petrol., 27, 225-230

― & Bittner, H. (1972): Verfeinerung der Kristallstruktur von Ilvait und Messung der Protonenresonanz. Neues.Jb. Miner. Monat., 1972, 551–553

― & ― (1974): Untersuchungen zur Kristallchemie des Ilvaits. Tscher. Miner. Petrog. Mitt., 21, 11-29

Bonazzi, P., Bindi, L. (1999): Structural adjustments induced by heat treatment in ilvaite. Am. Mineral., 84, 1604-1612

―, ― (2002): Structural properties and heat-induced oxidation-dehydrogenation of manganoan ilvaite from Perda Niedda mine, Sardinia, Italy. Am. Mineral., 87, 845-852

―, ―, Olmi, F. (2001): Reflectance variations in heat-treated ilvaite. Miner. Petrol., 72, 249-257

Bonev, I.K., Vassileva, R.D., Zotov, N., Kouzmanov, K. (2005): Manganilvaite, CaFe2+Fe3+(Mn,Fe2+)(Si2O7)O(OH), a new mineral of the ilvaite group from Pb-Zn skarn deposits in the Rhodope mountains (Bulgaria). Can. Mineral. 43, 1027-1042

Bratus, M.D., Drschakovskaia, K.A., Platonova, E.L., Sasin, G.G., Terleckij, A.V. (1979): The mineralogy of the Beregovo deposit. Miner. Sbornik, 33, 44-53

Brongniart, A. (1807): Traité élémentaire de minéralogie avec des applications aux arts. Imprimerie de Crapelet. Paris, 442 p.

Burns, R. G. & Straub, D. W. (1992): Mixed-valence iron minerals on Venus: Fe2+- Fe3+ oxides and oxy-silicates formed by surface–atmosphere interactions. Int. Conf. on Venus [abstr.], 15-17

Burt, D.M. (1971a): Some phase equilibria in the system Ca-Fe-Si-C-O. Carn. Inst. Washington Yearbook, 70, 178-184.

― (1971b): The facies of some Ca-Fe-Si skarns in Japan. Carn. Inst. Washington Yearbook, 70, 185-188.

― (1971c): Multisystems analysis of the relative stabilities of babingtonite and ilvaite. Carn. Inst. Washington Yearbook, 70, 189-197

Capitani G. & Mellini M. (2000): The crystallisation sequence of the Campiglia Marittima skarn. Neues Jb. Min. Mh. 3, 97-115

Carrozzini, B. (1994): Crystal structure refinements of ilvaite: new relationships between chemical composition and crystallographic parameters. Eur. J. Mineral., 6, 465-479

Cesena, M., Schepke, M., de Melo, M.A.C., Litterst, F.J., Amthauer, G. (1995): Mössbauer studies of Mn- and Al-doped synthetic ilvaites. J. Magn. Magn. Mater.,140-144, 1889-1890

Coey, J.M.D., Allan, J., Xuemin, K., Dang, K.V., Ghose, S. (1984): Magnetic and electrical properties of ilvaite. J. Appl. Phys., 55, 1963-1965

Damian, G. (2003): The genesis of the base metal ore deposit from Herja. Stud. Univ. Babeş–Bolyai Geol., 48, 85-100

Dana, J.D. (1854): A system of mineralogy comprising the most recent discoveries. 4th Ed. George P. Putnam & Co. Pubs. New York, 534 p.

Delgado, J. (1993): Caracterización mineralógica, físico-química y geoquímica de los skarns del contacto norte del batolito de la Maladeta (Vall d'Aran, Lleida). Unp. Ph.D., Universidad de Barcelona, Spain, 418 p.

Dietrich, V.V. (1972): Ilvait, ferroantigorit und greenalith als Begleiter oxidisch-sulfidichen venerzurgen in den Oberhalbsteiner serpentiniten. Schweiz. Miner. Petrog. Mitt., 52, 57-78

Einaudi, M., Meinert, L., Newberry, R. (1981): Skarn deposits. Econ. Geol., 75th Ann. Vol., 317-391

Evans, B.J. & Amthauer, G. (1980): The electronic structure of ilvaite and the pressure and temperature dependence of its 57Fe Mössbauer spectrum. J. Phys. Chem. Solids, 41, 985-1001

Fehr, K.T., Schneider, J., Hochleitner, R., Schmidbauer, E. (2005): Structure and physical property relations of Mn ilvaite Part 1: Compositional, structural and Mössbauer data. Phys. Chem. Minerals, 32, 388-399

Finger, L.W. & Hazen, R.M. (1987): Crystal structure of monoclinic ilvaite and the nature of the monoclinic-orthorhombic transition at high pressure. Z. Kristallogr., 179, 415-430

Franchini, M.B., Meinert, L.D., Vallés, J.M. (2002): First occurrence of ilvaite in a gold skarn deposit. Econ. Geol., 97, 1119-1126

Galley, A.G., Bailes, A.H., Kitzler, G. (1993): Geological setting and hydrothermal evolution of the Chisel Lake and North Chisel Zn-Pb-Ag-Au massive sulphide deposit, Snow Lake, Manitoba. Explor. Min. Geol., 2, 271-295.

―, Jonasson, I.R., Watkinson, D.H. (2000): Magnetite-rich calc-silicate alteration in relation to synvolcanic intrusion at the Ansil volcanogenic massive sulfide deposit, Rouyn–Noranda, Quebec, Canada. Mineral. Dep., 35, 619-637

Gerard, A. & Grandjean, F. (1971): Observation by Mössbauer effect of an electron hopping process in ilvaite. Solid State Commun., 9, 1845-1849

Ghazi-Bayat, B.; Amthauer, G., Ahsbahs, H. (1993): High pressure X-ray diffraction study of ilvaite CaFe22+Fe3+[Si2O7/O/(OH)]. Phys. Chem. Minerals, 20, 402-406

―, ―, Hellner, E. (1989): Synthesis and characterization of Mn-bearing ilvaite CaFe2−x2+MnxFe3+ [Si2O7/O/(OH)]. Miner. Petrol., 40, 101-109

―, ―, Schürmann, K.; Hellner, E. (1987): Synthesis and characterization of the mixed valent iron silicate ilvaite, CaFe3[Si2O7/O/(OH)]: Miner. Petrol., 37, 97-108

Ghose, S., Hewatt, A.W., Marezio, M. (1984): A neutron powder diffraction study of the crystal and magnetic structures of ilvaite from 305 K to 5 K — a mixed valence iron silicate with an electronic transition. Phys. Chem. Minerals, 11, 67-74.

―, ― , Pinkney, M. (1990): A powder neutron diffraction study of magnetic phase transitions and spin frustration in ilvaite, a mixed-valence iron silicate showing a semiconductor-insulator transition. Solid State Commun., 74, 413-418

―, Sen Gupta, P.K., Schlemper, E.O. (1985): Electron ordering in ilvaite, a mixed-valence iron silicate: crystal structure refinement at 138 K. Am. Mineral., 70, 1248-1252

―, Tsukimura, K., Hatch, D.M. (1989): Phase transitions in ilvaite, a mixed-valence iron silicate. Phys. Chem. Miner., 16, 483-496

Ghosh, D., Kundu, T., Dasgupta, S., Ghose, S. (1987): Electron delocalization and magnetic behavior in a single crystal of ilvaite, a mixed valence iron silicate. Phys. Chem. Minerals, 14, 151-155

Gole, M.J. (1981): Ca-Fe-Si skarns containing babingtonite: first known occurrence in Australia. Can. Mineral., 29, 269-277

Graesser, V.S. (1975): Ilvait als alpines Zerrkluft-Mineral. Schweiz. Miner. Petrog. Mitt., 55, 1-7

Grandjean, F. & Gerard, A. (1975): Analysis by Mössbauer spectroscopy of the electronic hopping process in ilvaite. Solid State Commun., 16, 553-556

Graser, G. & Markl, G. (2008): Ca-rich ilvaite–epidote–hydrogarnet endoskarns: A record of late–magmatic fluid influx into the persodic Ilímaussaq Complex, South Greenland. J. Petrol., 49, 239-265

Güttlher, B., Salje, E., Ghose, S. (1989): Polarized single crystal absortion spectroscopy of the Pnam - P21/a transition of ilvaite, Ca(Fe2+Fe3+)Fe2+Si2O8(OH) as measured between 300 K and 450 K. Phys. Chem. Minerals, 16, 606-613

Gustafson, W.I. (1974): The stability of andradite, hedenbergite, and related minerals in the system Ca-Fe-Si-O-H. J. Petrol., 15, 455-496

Haga, N. & Takéuchi, Y. (1976): A neutron diffraction study of ilvaite. Z. Kristallogr., 144, 161-174

Herzenberg, C.L. & Riley, D.L. (1969): Oxidation states and site symmetries of iron in ilvaite using Mössbauer spectrometry. Acta Crystallogr., A25, 389-391

Jenkins, D.M. & Bozhilov, K.N. (2003): Stability and thermodynamic properties of ferro-actinolite: A re-investigation. Am. J. Sci., 303, 723-752

Kwak, T.A.P. (1986): Fluid inclusions in skarns: Carbonate replacement deposits. J. Met. Geol., 4, 363-384

― & Askins, P. W. (1981): The nomenclature of carbonate replacement deposits, with emphasis on Sn-F(-Be-Zn) 'wrigglite' skarns. Aus. J. Earth Sci., 28, 123-136

Larsen, A.O. & Dahlgren, S. (2002): Ilvaite from the Oslo Graben, Norway. Neues Jb. Miner. Monat., 2002, 169-181

Lelièvre, M. (1807): De la yénite, nouvelle substance minérale. J. des Mines, 21, 65-74

Levresse, G., Tritlla, J., Villareal, J., González-Partida, E. (2006): The “El Pilote” fluorite skarn: A crucial deposit in the understanding and interpretation of the origin and mobilization of F from northern Mexico deposits. J. Geochem. Expl., 89, 205-209

Litterst, F.J. & Amthauer, G. (1984): Electron delocalization in ilvaite, a reinterpretation of its 57Fe Mössbauer spectrum. Phys. Chem. Miner., 10, 250-255

Logan, M.A.V. (2000): Mineralogy and geochemistry of the Gualilán skarn deposit in the Precordillera of western Argentina. Ore Geol. Rev., 17, 113-138

Luchetti, G. (1989): High-pressure ilvaite bearing mineral assemblages from the Voltri Group (Italy). Neues Jb. Miner. Monat., H.1, 1-7

Meinert, L. (1984): Mineralogy and petrology of iron skarns in western British Columbia, canada. Econ. Geol., 79, 869-882

― (1987): Skarn zonation and fluid evolution in the Groundhog Mine, Central mining district, New Mexico. Econ. Geol., 82, 523-545

Mücke, A. (2003): Fayalite, pyroxene, amphibole, annite and their decay products in mafic clots within Younger Granites of Nigeria: Petrography, mineral chemistry and genetic implications. J. Afr. Earth Sci., 36, 55-71

Muir Wood, R. (1982): The Laytonville Quarry (Mendocino County, California) exotic block: iron-rich blueschist-facies subduction-zone metamorphism. Miner. Mag., 45, 87-99

Naslund, H.R., Hughes, J.M., Birnie, R.W. (1983): lvaite, an alteration product replacing olivine in the Skaergaard intrusion. Am. Mineral., 68, 1004-1008

Nolet, D.A. (1978): Electron delocalization observed in the Mössbauer spectrum of ilvaite. Solid State Commun., 28, 719-722

― & Burns, R.G. (1979): Ilvaite: A study of temperature dependent electron delocalization by the Mössbauer effect. Phys. Chem. Minerals, 4, 221-234

Pesquera, A. & Velasco, F. (1986): An occurrence of ilvaite layers in the Cinco Villas metasomatic rocks, Western Pyrenees (Spain). Miner. Mag., 50, 653-656

Plimer, I.R., Ashley, P.M. (1978): Manganoan ilvaite from Broken Hill, N.S.W. and Ban Ban, Queensland, Australia. Miner. Mag., 42, 85-88

Ramboz, C., Oudin, E., Thisse, Y. (1988): Geyser-type discharge in Atlantis II deep, Red Sea: Evidence of boiling from fluid inclusions in epigenetic anhydrite. Can. Mineral., 26, 765-786

Ramdohr, P. (1967): A widespread mineral association connected with serpentinization, with notes on some new or insufficiently defined minerals. Neues Jb. Miner. Abh., 107, 241-265

Robie, R.A., Evans Jr., H.T., Hemingway, B.S. (1988): Thermophysical properties of ilvaite CaFe22+Fe3+Si2O7O(OH); Heat capacity from 7 to 920 K and thermal expansion between 298 and 856 K. Phys. Chem. Minerals, 15, 390-397

Schmidbauer, E. & Amthauer, G. (1998): Study of the electrical charge transport in ilvaite using impedance spectroscopy and thermopower data. Phys. Chem. Minerals, 25, 522-533

― , Fehr, Th., Hochleitner, R., Schneider, J. (2005): Structure and physical property relations of Mn ilvaite Part II: Electrical conductivity and thermopower. Phys. Chem. Minerals, 32, 400-411

Simanenko, L.F. (2006): Partizansky base-metal skarn deposit, Dal’negorsk ore district, Russia: Stages of ore formation, mineral assemblages, and typomorphism of fahlore. Geol. Ore Deposits, 48, 290-303

Singer, A. & Stoffers, P. (1987): Mineralogy of a hydrothermal sequence in a core from the Atlantis II deep, Red Sea. Clay Miner., 22, 251-267

Soen, O.I. & Sørensen, H. (1964): The occurrence of nickel-arsenides and nickel antimonide at Igdbinguaq, in the Ilimaussaq alkaline massif, south Greenland. Medd. Om Gronland, 172, 1-50

Takéuchi, Y., Haga, N., Bunno, M. (1983): X-ray study on polymorphism of ilvaite, HcaFe2+2Fe3+O2[Si2O7]. Z. Kristallogr., 163, 267-283

Thomson, T. (1836): Outlines of mineralogy, geology, and mineral analysis. Baldwin & Cradock. London, 725 p.

Tornos, F. (1989): Los skarns y mineralizaciones asociadas del Sistema Central Español. Modelo de caracterización petrológica, geoquímica y metalogénica. Unp. Ph.D., Universidad Complutense, Madrid, Spain, 487 p.

Verkaeren, J. & Bartholomé, P. (1979): Petrology of the San Leone magnetite skarn deposit (SW Sardinia). Econ. Geol., 74, 53-66

Vivallo, W. (1985): The geology and genesis of an Early Proterozoic massive sulfide deposit at Garpenberg, central Sweden. Econ. Geol., 80, 17-32

Wager, L.R., Vincent, E.A., Smales, A.A. (1957): Sulphides in the Skaergaard intrusion, east Greenland. Econ. Geol., 52, 855-904

Webster, N. (1828): Noah Webster's American Dictionary of the English Language

Weiss H.M., Nölter, T., Stoffers, P. (1980): Das Auftreten von Ilvait in den Erzschlämmen des Roten Meeres: N. Jb. Miner. Abh, 139, 239-253

Wise, W. & Moller, W.P. (1990): Occurrence of Ca-Fe silicate minerals with zeolites in basalt cavities at Bombay, India. Eur. J. Mineral., 2, 875-883

Xuemin, V., Ghose, S., Dunlap, B.D. (1988): Phase transition in ilvaite, a mixed-valence iron silicate. I: A 57Fe Mössbauer study of magnetic order and spin frustration. Phys. Chem. Minerals, 16, 55-60

Yamanaka, T. & Takéuchi, Y. (1979): Mössbauer spectra and magnetic features of ilvaites. Phys. Chem. Miner., 4, 149-159

Yaqian, Q. & Jibao, G. (1993): Study of hydrogen isotope equilibrium and kinetic fractionation in the ilvaite-water system. Geochim. Cosmochim. Acta, 57, 3073-3082

Zierenberg, R.A. & Shanks, W.C.III (1983): Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II deep, Red Sea. Econ. Geol., 78, 57-72

Download 64.19 Kb.

Share with your friends:

The database is protected by copyright © 2022
send message

    Main page