Designing a space debris removal mission targeting a Cosmos 3M rocket body in leo using a chemical engine and an elechtrodynamic tether to perform the de-orbiting


Definition of launcher and launch site



Download 173.09 Kb.
Page3/4
Date20.10.2016
Size173.09 Kb.
#5079
1   2   3   4

Definition of launcher and launch site


After the definition of the target, the next step is the definition of the launch site and launcher. The choice depends on the target orbit and the availability of a suitable launch vehicle.

According to these boundaries, the potential launch sites were shortlisted among Vandenberg (USA - 34°43′57″N 120°34′05″W), Kourou (French Guyana - 5.305°N 52.834°W) and Plesetsk (Russian Federation - 62°57′35″N, 40°41′2″E). The reason why the Baikonur Cosmodorme was not considered as a possible choice, was the possibility that Russia will abandon all facilities for Baikonur and launch all satellites from Plesetsk in the next 5 years, based on news reports.

Another important feature of the desired launch vehicle should be the final stage restarting capacity. Our approach is integrating all de-orbiting subsystems onto the upper stage and using the upperstage for propulsion purposes, which requires restartability. Moreover, several maneuvers will be required to reach the target orbit, which will also depend on restartability.

Another parameter that affects the choice of launcher, is the amount of propellant capacity of the launcher’s upper stage. The upperstage is required to inject a satellite into orbit and also move our system to the target orbit and back to a LEO orbit for the application of the tether system. As the amount of propellant used in this process will depend on the upper stage itself, the analysis will be done with one upper stage. If the upper stage was unable to perform our mission, a secondary upper stage with larger propellant capacity will be used.



Based on all these parameters, a list of active launch vehicles was created, as outlined in Table . This list summarizes the polar launch capability, upper stage properties and the availability of a model in STK. Considering all these required characteristics, the Soyuz vehicle with the fregat upper stage was chosen as the prime launch vehicle. The Proton -M launch vehicle with the Breeze-M upper stage will be considered as a secondary alternative system. The Plesetsk cosmodorme was chosen as the launch site for both vehicles. The Plesetsk cosmodrome is a military site in the North-West Russia at some 800 km from Moscow.



Figure - Plesetsk Cosmodrome (6)

Table - Launch vehicles and launch sites (6)

Launch Vehicle

Country

PEO characteristics

Payload (kg)

Launch Site

Upper Stage

Dimensions

(m × m)

Dry Mass (t)

Propulsion

Propellant Mass (t)

Total Lift-off mass (t)

Restartable

STK model?

Dnepr-1

Ukraine

800 km, I = 87.3

400

Baikonur

1 * 3

2,35

RD-869 (UDMH-N2O4)

1,91

4,26

N

Y

Zenit

Russia

200 km, I = 99

11380

Baikonur

10.4 * 3.9

8,3

(Kerosene-LO2)

-

89,9

N

Y

CZ-2D

China

200/400 km, I = 90

2750/1175

JSLC

10.4 * 3.35

4

YF-22 B (UDMH-N2O4)

36

40

N

N

CZ-2C

China

600 km, I = 90

800

JLSC

7.5 * 3.35

4

YF-22 (UDMH-N2O4)

35

39

N

N

Taurus-XL

US

400 km, I = 98

880/1050

VAFB

2.1 * 0.97




Solid

-

0,98

N

Y

Minotaur

US

740 km, I = 98.6

335

VAFB

1.34 * 0.97

0,126

Solid

0,771

0,897

N

Y

Taurus

US

800 km, I = 98.2

580-600/740

VAFB

1.34 * 0.98




Solid

0,77

0,893

N

Y

CZ-2E/ETS

China

1000km, I = 86

4930

XLSC

2.936 * 1.7

0,541

SPTM-17 (solid)

5,444

5,98

N

Y

Ariane 5

EU

800 km, i = 98.6

9500

ELA3

3.356 * 3.936

1,25

AESTUS (MMH-N2O4)

9,7

11

Y

Y

GSLV

India

407 km, I = 51.6

5000

SHAR

8.7 * 2.9

2,2

KVD - 1 (LH2-LO2)

12,5

14,7

Y

N

PSLV

India

800 km, I = 99.1

1200

SHAR

2.65 * 1.34

0,92

PS-4/L2 (MMH-Mon-3)

2

2,92

Y

Y

Delta-4H

US

500 km, I = 90

21700

VAFB

13.7 * 5.13

3,49

RL 10B-2 (LH2-LO2)

27,2

30,69

Y

Y

Delta-4M

US

500 km, I = 90

7350-11700

VAFB

12.2 * 4.07 or 13.7 * 5.13

2.850/3.490

RL10B-2 (LH2-LO2)

20.410/27.200

23.260/30.690

Y

Y

Delta-2

US

833 km, I = 98.7

1591-3186

VAFB

5.88 * 2.44

0,95

AJ 10-118 K (Aerozine-N2O4)

6

6,95

Y

Y

ATLAS 2, 2A

US

185 km, I = 90

5510-6170

VAFB

10.06 * 3.05

1,84

RL-10A-3-3A or RL-10A-4 (LH2-LO2)

16,74

18,8

Y

Y

ATLAS 5

US

189 km, I = 90

9050-10750

VAFB

12.68 * 3.05

1.914/2.106

RL-10A-4-2 (LH2-LO2)

20.672/20.830

22.586/22.936

Y

Y

CZ-3

China

200 km, I = 90

3000

XLSC

7.48 * 2.25

2

YF-73 (LH2-LO2)

8,5

10,5

Y

Y

CZ-4

China

900 km, I = 99

1650-2800

TSLC

1.92 * 2.9

1

YF-40 (UDMH-N2O4)

14,15

15,15

Y

N

Soyuz-ST

Russia

900 km, I = 90

3850

Baikonur

1.5 * 3.35

1

S5-92 (UDMH-N2O4)

5,35

6,535

20

Y

Vega

EU

700 km, I = 80

1580

ELA1

2.04 * 1.952

0,418

(UDMH-N2O4)

0,55

0,968

5

Y

Soyuz-Ikar-Fregat

Russia

700 km, I = 90

3000

Plesetsk

2.61 * 2.72 or 1.5 * 3.35

2.352/1

UDMH-N2O4

0.3-0.9/5.35

3.29/6.535

20

Y

Proton-M

Russia

170 km, I = 72.7

19975

Baikonur

2.61 * 4.1

2,37

UDMH-N2O4

19,8

-

8

Y

Falcon 1

US

700 km, I = 85

450

VAFB

-




Kestrel (RP-1-LO2)







Y

Y

H-2A

Japan

800 km, I = 98.6

4400

Tanegashim

10.7 * 4

3

LE-5B (LH2-LO2)

17

20

Y

N

Falcon 9

US

900 km, I = 80

7246

VAFB

-




Merlin (RP-1-LO2)







2

N

CZ-3B/3C

China

800 km, I = 90

6000

XLSC

12.375 * 3

0,3

YF-75 (LH2-LO2)

18,193

20,6

2

Y

Soyuz-2

Russia

820 km, I = 98.7

4350/4900

Plesetsk

1.5 * 3.35

1

S5-92 (UDMH-N2O4)

5,35

6,535

20

Y

Proton-K

Russia

SSO

4600

Baikonur

5.5/6.3 * 3.7

2.500/3.370

Kerosene or Sintin-LO2

14,8

17.3/18.2

7

Y

ROCKOT

Russia

800 km, I = 90

1340

Plesetsk

2.61 * 2.5

1,6

11DM58 (UDMH-N2O4)

4,9

6,5

8

Y




Download 173.09 Kb.

Share with your friends:
1   2   3   4




The database is protected by copyright ©ininet.org 2024
send message

    Main page