Dsl, originally digital subscriber loop

Download 40.22 Kb.
Size40.22 Kb.
Digital subscriber line

From Wikipedia, the free encyclopedia

"DSL" redirects here. For other uses, see DSL (disambiguation).

Digital subscriber line (DSL, originally digital subscriber loop) is a family of technologies that provide Internet access by transmitting digital data over the wires of a local telephone network. In telecommunications marketing, the term DSL is widely understood to mean asymmetric digital subscriber line (ADSL), the most commonly installed DSL technology. DSL service is delivered simultaneously with wired telephone service on the same telephone line. This is possible because DSL uses higher frequency bands for data. On the customer premises, a DSL filter on each non-DSL outlet blocks any high frequency interference, to enable simultaneous use of the voice and DSL services.

The bit rate of consumer DSL services typically ranges from 256 kbit/s to 40 Mbit/s in the direction to the customer (downstream), depending on DSL technology, line conditions, and service-level implementation. In ADSL, the data throughput in the upstreamdirection, (the direction to the service provider) is lower, hence the designation of asymmetric service. In symmetric digital subscriber line (SDSL) services, the downstream and upstream data rates are equal.

History [edit]

Theory behind DSL, like many other forms of communication, can be traced back to Claude Shannon's seminal 1948 paper: A Mathematical Theory of Communication. An early patent was filed in 1979 for the use of existing telephone wires for both voice phones and data terminals that were connected to a remote computer via a digital data carrier system.[1]

The motivation of digital subscriber line technology was the Integrated Services Digital Network (ISDN) specification proposed in 1984 by the CCITT (now ITU-T) as part of Recommendation I.120, later reused as ISDN Digital Subscriber Line (IDSL). Employees at Bellcore (now Telcordia Technologies) developed Asymmetric Digital Subscriber Line (ADSL) and filed a patent in 1988,[2] by placing wide-band digital signals above the existing baseband analog voice signal carried between telephone company telephone exchanges and customers on conventional twisted pair cabling facilities.[3] Consumer-oriented ADSL was designed to operate on existing lines already conditioned for Basic Rate Interface ISDN services, which itself is a digital circuit switching service (non-IP), though most incumbent local exchange carriers (ILECs) provision Rate-Adaptive Digital Subscriber Line (RADSL) to work on virtually any available copper pair facility—whether conditioned for BRI or not. Engineers developed higher-speed DSL facilities such as High bit rate Digital Subscriber Line (HDSL) and Symmetric Digital Subscriber Line (SDSL) to provision traditional Digital Signal 1 (DS1) services over standard copper pair facilities.

A DSL circuit provides digital service. The underlying technology of transport across DSL facilities uses high-frequency sinusoidal carrier wave modulation, which is an analog signal transmission. A DSL circuit terminates at each end in a modem which modulates patterns of bits into certain high-frequency impulses for transmission to the opposing modem. Signals received from the far-end modem are demodulated to yield a corresponding bit pattern that the modem retransmits, in digital form, to its interfaced equipment, such as a computer, router, switch, etc. Unlike traditional dial-up modems, which modulate bits into signals in the 300–3400 Hz baseband (voice service), DSL modems modulate frequencies from 4000 Hz to as high as 4 MHz. This frequency band separation enables DSL service and plain old telephone service (POTS) to coexist on the same copper pair facility. Generally, higher bit rate transmissions require a wider frequency band, though the ratio of bit rate to symbol rate and thus to bandwidth are not linear due to significant innovations in digital signal processing and digital modulation methods.

Early DSL service required a dedicated dry loop, but when the U.S. Federal Communications Commission (FCC) required ILECs to lease their lines to competing DSL service providers, shared-line DSL became available. Also known as DSL over Unbundled Network Element, this unbundling of services allows a single subscriber to receive two separate services from two separate providers on one cable pair. The DSL service provider's equipment is co-located in the same central office (telephone exchange) as that of the ILEC supplying the customer's pre-existing voice service. The subscriber's circuit is then rewired to interface with hardware supplied by the ILEC which combines a DSL frequency and POTS frequency on a single copper pair facility.

On the subscriber's end of the circuit, inline low-pass DSL filters (splitters) are installed on each telephone to filter the high-frequency "hiss" that would otherwise be heard, but pass voice (5 kHz and below) frequencies. Conversely, high-pass filters already incorporated in the circuitry of DSL modems filter out voice frequencies. Although ADSL and RADSL modulations do not use the voice-frequency band, nonlinear elements in the phone could otherwise generate audible intermodulation and may impair the operation of the data modem in the absence of low-pass filters.

Older ADSL standards delivered 8 Mbit/s to the customer over about 2 km (1.2 mi) of unshielded twisted-pair copper wire. Newer variants improved these rates. Distances greater than 2 km (1.2 mi) significantly reduce the bandwidth usable on the wires, thus reducing the data rate. But ADSL loop extenders increase these distances by repeating the signal allowing the LEC to deliver DSL speeds to any distance.[4]

By 2012 some carriers reported steadily declining numbers of DSL users.[5]

Operation [edit]

Basic technology [edit]

Telephones are connected to the telephone exchange via a local loop, which is a physical pair of wires. Prior to the digital age, the use of the local loop for anything other than the transmission of speech, encompassing an audio frequency range of 300 to 3400 Hertz (voiceband or commercial bandwidth) was not considered. However, as long distance trunks were gradually converted from analog to digital operation, the idea of being able to pass data through the local loop (by utilizing frequencies above the voiceband) took hold, ultimately leading to DSL.

For a long time it was thought that it was not possible to operate a conventional phone-line beyond low-speed limits (typically under 9600 bit/s). In the 1950s, ordinary twisted-pair telephone-cable often carried four megahertz (MHz) television signals between studios, suggesting that such lines would allow transmitting many megabits per second. One such circuit in the UK ran some ten miles (16 km) between Pontop Pike transmitter and Newcastle upon Tyne BBC Studios. It was able to give the studios a low quality cue feed but not one suitable for transmission.[citation needed] However, these cables had other impairments besides Gaussian noise, preventing such rates from becoming practical in the field. The 1980s saw the development of techniques for broadband communications that allowed the limit to be greatly extended.


Mark these sentences True, false or Not Given according to the information in the text.

  1. It is not possible to speak over a phone and use the internet at the same time because DSL’s higher frequency interferes with the phone line.

  2. Claude Shannon’s paper; a Mathematical Theory of Communication details how to send emails through a telephone.

  3. ADSL was created through the use of digital signals, which had a greater bandwidth, and were put on top of the analog signals that were already there.

  4. Low-pass filters are used to remove noise from voice lines, whilst high-pass filters are used to remove voice frequencies that would otherwise interfere.

Explain what these terms how these terms are connected to DSL

Asymetric Service

Patterns of bits

Shared-line DSL

The Pontop Pike transmitter and Newcastle on Tyne studios

Find examples of the passive in the text. Make them active, why do we use the passive? The examples here are present simple, how can you change them into present perfect, past simple, etc

Download 40.22 Kb.

Share with your friends:

The database is protected by copyright ©ininet.org 2020
send message

    Main page