Haggis
Working document
Greg Michaelson & Quintin Cutts
G.Michaelson@hw.ac.uk
Q.Cutts@glasgow.ac.uk
Contents
Evolution 2
Introduction 4
Types 4
System entities 5
Identifiers 6
Variable introduction 6
Commands 6
Assignment 6
Command sequences 7
Blocks 7
Parallelism 7
Condition 7
Repetition 7
Iteration 7
Operations 8
Coercions 9
Selection 9
Comment 9
Elision 9
I/O 9
Sub-programs 11
Object Orientation 13
Graphics 15
GUI 15
Grid GUI 16
Choices 16
GUI Example 1 18
GUI Example 2 19
Derek Middleton SQA Exam Examples 22
Quintin Cutts Assessment at SQA Examples 24
Jeremy Scott Smartphone Student Examples 26
Evolution -
to do
-
explicit type signatures?
-
side effects?
-
14/1/14
-
ARRAY size clarified
-
unknown size ARRAY variable definition
-
corrected floating point definition
-
“-“ no longer permitted in identifiers
-
commands in condition/repetition bodies
-
added draft OO
-
20/12/13
-
OPEN, CLOSE, CREATE
-
end of file
-
reordered so GUI at end
-
9/9/13
-
explicit type coercions
-
comments
-
24/6/13
-
SEQUENCE indices start at 0
-
removed PROCEDURE/FUNCTION BEGIN
-
added RETURN as last to be executed in PROC/FUNC
-
21/6/13
-
added ^ exponent
-
changed && to AND, || to OR, == to =, != to ≠
-
changed examples at end to reflect previous changes
-
13/6/13
-
added REF & VAL options for parameters
-
22/5/13
-
added procedures & functions
-
18/3/13
-
integer divide now explicitly rounds down
-
mixed type arithmetic has explicit coercions
-
introduced STRING append &
-
11/12/12
-
rewritten to reflect National 5 document: SET/SEND/RECEIVE/END X
-
revised GUI notation to reflect above changes
-
added GUI example
-
revised Derek/Quentin/Jeremy examples accordingly
Haggis is a joint venture by Greg Michaelson and Quintin Cutts to produce a notation suitable for posing programming assessments for all levels of the Scottish Qualifications Agency, Curriculum for Excellence, Computing Science curricula, as well as courses elsewhere.
The design philosophy is that Haggis should:
-
not be based on any one extant programming language;
-
be easily translatable into and out of most programming languages used in Scottish schools;
-
be suitable for qualifications up to Advanced Higher/University first year, while also being amenable to sub-setting as appropriate for earlier year qualifications;
-
be intuitive (whatever that means...);
-
be succinct but relaxed about there being different ways of expressing the same thing;
-
be orthogonal, that is unitary constructs should have meanings in different contexts;
-
not expose conceptual details if they are not germane.
We would like to thank David Bethune (SQA), Paul Cockshott (Glasgow) and Richard Connor (Strathclyde) for ongoing discussion about the Haggis specification and evolution.
Types
Haggis is typed but types are not exposed if obvious from context. Haggis is mostly monomorphic and mostly indifferent to issues of implicit/explicit, weak/strong and static/dynamic typing.
The base types and their values are:
-
INTEGER: -big ... + big – where big is arbitrary
-
REAL: -big.small ... + big.small – where big and small are arbitrary
-
floating point notation is also fine: +/- big1.smallEbig2 == big1.small times 10 to the power big2
-
BOOLEAN: true & false
-
CHARACTER: ‘character’
The structured type is:
-
SEQUENCE: arbitrary length sequence of values of arbitrary type
SEQUENCEs are addressed from index 0.
This encompasses:
-
ARRAY: finite length sequence of same type
-
STRING: ARRAY of CHARACTER
-
TUPLE : finite length sequence of different type
-
RECORD: finite length sequence of different type with named fiields
-
STREAM: SEQUENCE of CHARACTER
-
this encompasses FILE & URL
Finite length structured type values may be denoted explicitly as:
-
ARRAY: [value,...]
-
TUPLE: (value,...)
-
RECORD: (name=value,...)
-
STRING: “character character...” == [‘character’,’character’,...]
File names are STRINGs.
The GUI types are:
-
WINDOW: SEQUENCE of GUI types with implicit IMAGE
-
LABEL: displays STRING
-
BUTTON: causes EVENT
-
TEXTBOX: returns STRING
-
MENU: SEQUENCE of BUTTON or MENU
-
IMAGE: with means of extracting/changing sub-images and drawing graphics
System entities
System entities include:
-
DISPLAY: in effect the default WINDOW
-
KEYBOARD: in effect the default TEXTBOX
-
MOUSE: with means of determining movement & button clicks
-
TIME: with means of extracting date/time information from year to milli-second
Identifiers
Identifiers are the usual sequences of letters and digits and “.” and “_”.
Variable introduction
Variables may be introduced explicitly by declaration:
-
VAR id – unknown type
-
VAR id [size] – ARRAY of unknown type & known size
-
type id – id can only be associated with type values
-
type id [size] – ARRAY of known type & size
-
VAR [] id – ARRAY of unknown type & size
-
size type id [] – ARRAY of known type & unknown size
size is a sequence of size type values
Variables may be introduced implicitly by first use on the left of an assignment:
-
SET id TO value – introduces id of same type as, and initialised to, value
-
includes initialisation of structured types
Commands
Commands include:
-
assignment
-
command sequences
-
blocks
-
parallelism
-
conditions
-
repetitions
-
iterations
-
sub-program calls
Assignment
SET id TO expression
-
assignment i.e. change value associated with id to that of expression
-
see above for type implications
Command sequences
Commands one line after another are implicitly in top to bottom sequence, subject to block rules below.
Command sequences may be made explicit on one line with “;” as a separator, not a terminator.
Blocks
Contiguous blocks of sequential commands may be identified in the context of an parent command and terminated with command specific end markers.
Blocks determine the scope and extent of any variables they introduce.
Parallelism
PARALLEL commands1 AND commands2 AND... END PARALLEL
-
executed commands simultaneously
Condition
IF expression THEN commands END IF
IF expression THEN commands ELSE command END IF
WHEN expression DO commands END WHEN
-
expression evaluates to an EVENT
-
in PARALLEL, END WHEN may be omitted before AND and END PARALLEL
REPEAT commands END REPEAT
REPEAT expression TIMES commands END REPEAT
WHILE/UNTIL expression DO commands END WHILE
-
DO may be omitted if commands is indented
REPEAT command sUNTIL/WHILE expression END REPEAT
Iteration
FOR id FROM expression1 TO expression2 DO commands END FOR
FOR id FROM expression1 TO expression2 STEP expression3 DO command END FOR
FOR EACH id FROM expression DO commands END FOR EACH
-
expression returns a structured value
-
the order of value extraction form the value is probably first to last
DO may be omitted if commands is indented
Operations
Haggis provides the usual infix and prefix operations on INTEGER and REAL:
-
minus: - unary
-
add: +
-
subtract: -
-
multiply: *
-
divide: /
-
exponent: ^
INTEGER divide rounds down.
In addition, INTEGER has:
Arithmetic may be mixed mode and is coerced:
|
INTEGER
|
REAL
|
INTEGER
|
I
|
R
|
REAL
|
R
|
R
|
The binary comparison operators are:
-
equality: =
-
inequality: ≠ (or !=)
-
less than: <
-
less than or equal: <=
-
greater than: >
-
greater than or equal: >=
Comparisons apply to all finite types, where equality is defined to be element by element.
Order comparisons on structured types imply alphabetic order or equivalent.
The logical operators are:
-
conjunction: AND
-
disjunction: OR
-
negation: NOT
Expressions are bracketed by (...).
All structured types have the operator:
append: &
STRING append with mixed types coerces non-STRINGs to STRING representation.
Coercions
(type) preceding an expression will coerce the value of that expression to the type, if such coercion makes sense
(INTEGER) coercing a real value will round that value down to the nearest integer.
All SEQUENCE types may be accessed by: id[index]
Fields of RECORD types may be accessed by: id.name
Comment
A comment of the form #text may appear on a line on its own or at the end of a line.
Elision
<text> (i.e. text bracketed by <...>) may be used instead of any command or expression.
I/O
RECEIVE id FROM source
-
input next value from source to id
-
source may be:
-
KEYBOARD
-
id associated with TEXTBOX
-
file path
-
first access to file source opens file
-
source may be preceded by a coercion (type)
SEND expression TO target
-
append value of expression in standard form to target
-
target may be:
-
DISPLAY
-
id associated withLABEL or BUTTON
-
file path
-
first access to file target creates new file
empty(path)
-
returns true if file associated with path is empty
The following optional commands may be used to explicitly open, create and close files:
OPEN path
-
opens extant file associated with path for input or output by context of use
CREATE path
-
creates new file associated with path
-
new file replaces any extant file
-
does not open file
CLOSE path
-
closes file associated with path
A typical sequence for an extant file would be:
OPEN path
process using path
CLOSE path
A typical sequence for a new file would be:
CREATE path
OPEN path
process using path
CLOSE path
Note that the string for a path may be associated with a variable and that variable used in I/O i.e.
SET id TO path
RECEIVE ... FROM id/SEND ... TO id
OPEN/CREATE/CLOSE id
...empty(id)...
Sub-programs
We explicitly distinguish:
At simplest, parameter-less procedure definitions have the form:
PROCEDURE id()
...
END PROCEDURE
and parameter-less function definitions have the form:
FUNCTION id()
...
END FUNCTION
The last command to be executed in a FUNTION must always be:
RETURN expression
Parameter-less procedures and functions are called by:
id()
in control and expression contexts respectively.
For a function call, it is implicit that the return expression should have a type which is consistent with the calling context.
For functions, the definition may be optionally preceded by the return type:
type FUNCTION id()
...
END FUNCTION
so the return expression must have that type.
For procedures and functions with parameters, the identifier is followed by a sequence of comma separated formal parameter identifiers:
PROCEDURE id(id1,id2,...idN)
...
FUNCTION id(id1,id2,...idN)
...
It is a Haggis convention that occurrences of formal parameters in procedure and function bodies should be in italics, or underlined in non-digital media.
Procedures and functions with parameters are called by:
id(exp1,exp2,...expN)
It is implicit that the actual parameter expi has the same type as the formal parameter idi.
Formal parameters may be optionally preceded by their types:
PROCEDURE id(type1 id1,type2 id2,...typeN idN)
...
FUNCTION id(type1 id1,type2 id2,...typeN idN)
...
No assumptions are made about the mode of parameter passing. However, formal parameters may also be optionally preceded by:
-
REF – call by reference
-
VAL – call by value
Object Orientation
Classes are defined by:
CLASS id [INHERITS id]
...
END CLASS
Haggis has single inheritance.
Classes may contain:
-
variable introduction –fields
-
procedure/function definitions –methods
-
constructor definitions:
CONSTRUCTOR id(id1,id2,...idN)
...
END CONSTRUCTOR
A class id may appear anywhere that type may appear.
New instances of objects are constructed by:
CONSTRUCT id(exp1,exp2,...expN)
There are implicit constructors for SEQUENCE types:
e.g. INT x[];
SET x TO CONSTRUCT INT[23];
Fields of objects are selected by:
exp.id
Methods of objects are invoked by:
exp.id(id1,id2,...idN)
For example:
CLASS stack
INT sp;
INT MAX;
INT s[];
CONSTRUCTOR stack(INT n)
SET SP TO 0;
SET MAx to n;
SET s TO CONSTRUCT INT[n];
END CONSTRUCTOR
PROCEDURE push(INT v)
IF sp=MAX THEN
SEND “stack overflow” TO DISPLAY
ELSE
SET s[sp] TO v;
SET sp TO sp+1;
END PROCEDURE
INT FUNCTION pop()
IF sp=0 THEN
SEND “stack underflow” TO DISPLAY
RETURN 0;
ELSE
SET sp TO sp-1;
RETURN s[sp];
END FUNCTION
END CLASS
The object oriented form:
exp.id(parameters)
has the procedural equivalent:
id(exp,parameters)
Graphics
Graphics may be in pen or co-ordinate mode.
Generic commands include:
-
clear() – clear drawing area
-
lineWidth(integer)
Pen commands:
-
penUp()
-
penDown()
-
penHome() – sets pen facing north
-
penRotate(+/-degrees)
-
penMove(distance)
-
penColour(colour)
-
etc
Co-ordinate commands:
-
line(x1,y1,x2,y2)
-
drawColour(colour)
-
fillColour(colour)
-
drawRectangle(x,y,height,length)
-
drawCircle(x,y,radius)
-
etc
GUI
A basic WINDOW is implicitly a column of rows.
Constructs are implicitly resized sensibly as they are added to a WINDOW.
ADD id1 TO id2
-
add GUI element associated with id1 as next row of WINDOW associated with id2
ADD [...] TO id
-
[...] specifies a column of GUI constructs
-
so each construct in [...] added on next row of WINDOW associated with id
ADD[ ...[...]...] TO id
-
nested [..] specifies a row of GUI constructs
-
so each constructs in nested [...] added along same row
ADD [...[...[...]...]...]
-
inner [...] specifies a sub-column on a row
Use id1.id2 to disambiguate elements in different windows with same name where id1 is window and id2 is element
NB DISPLAY is default WINDOW so after adding elements to DISPLAY don’t need to use nominate “DISPLAY.” explicitly
NB KEYBOARD is an implicit TEXTBOX shared by all WINDOWs.
Grid GUI
Each element is same size.
WINDOW id[r]
-
id has integer r rows of same size
WINDOW id [r][c]
-
id has integer r rows of integer c columns
access using indices
Choices
To set text on GUI construct:
a)
BUTTON stop
SET stop to “STOP”
b)
BUTTON stop(“STOP”)
c)
BUTTON stop
stop.setText(“STOP”)
Not mutually exclusive...
Generalised problem is notation for changing arbitrary GUI construct properties:
-
size
-
colour
-
font
-
visibility
-
enabled
GUI Example 1
w
COUNTER
title
counter
27
+
RESET
plus
reset
WINDOW w
LABEL title
SET title to “COUNTER”
LABEL counter
SET counter TO 0
BUTTON plus
SET plus to “+”
BUTTON reset
SET reset TO “RESET”
ADD [title,counter,[plus,reset]] TO w
PARALLEL
WHEN plus.clicked() DO
SET counter TO counter+1
AND
WHEN reset.clicked() DO
SET counter TO 0
END PARALLEL
GUI Example 2
c
0
keys
1
3
2
4
6
5
7
9
8
CLEAR
ENTER
0
enter
zero
clear
WINDOW c
LABEL padDisplay
BUTTON keys[3][3]
BUTTON clear, zero, enter
SET padDisplay TO 0
FOR i FROM 0 TO 2
FOR j FROM 0 TO 2
SET keys[i][j] TO 3*i+j+1
END FOR
END FOR
SET clear TO “CLEAR”
SET zero TO 0
SET enter TO “ENTER”
SET c TO [padDisplay,keys,[clear,zero,enter]]
PARALLEL
WHEN keys[i][j] DO
SET padDisplay TO 10*padDisplay+2* i+j+1
AND
WHEN zero DO
SET padDisplay TO 10*padDisplay
AND
WHEN clear DO
SET padDisplay TO 0
AND
WHEN enter DO
SEND padDisplay TO DISPLAY
END PARALLEL
Derek Middleton SQA Exam Examples
AH 2011
lower TO
higher TO
FOR counter FROM lower TO upper DO
SET temp TO distance[counter]
SET distance[counter] TO distance[upper-counter]
SET distance[upper-counter] TO temp
END FOR
AH 2011
SET lower TO
SET upper TO
REPEAT
SET middle TO (lower+upper)/2
IF search_value>list[middle] THEN
SET lower TO middle+1
ELSE
SET upper TO middle-1
END IF
UNTIL list[middle]=search_value OR lower>upper
END REPEAT
IF search_value=list[middle] THEN
SEND [“Search item was found at”,middle] TO DISPLAY
ELSE
SEND “Search item is not in list” TO DISPLAY
END IF
AH 2009
FOR counter FROM 1 T0 DO
IF array[counter]>array[counter+1] THEN
SET temp TO array[counter]
SET array[counter] TO array[counter+1]
SET array[counter+1] TO temp
SET swap TO true
H 2010
FOR EACH current IN list DO
IF current.gender = “M” OR current.gender = “F” THEN
SET current.valid TO true
ELSE
SET current.valid TO false
END IF
END FOR
H Comp 2010
FOR floor_no FROM 1 TO 38 DO
FOR room_no FROM 1 TO 25 DO
SEND [“Floor number:”,floor_no] TO DISPLAY
SEND [“Room number:”,room_no] TO DISPLAY
END FOR
SEND [“\n”,”\n”] TO DISPLAY
END FOR
Quintin Cutts Assessment at SQA Examples
Slide 7
alienOnWheels.neck01.turn(left,1)
alienOnWheels.neck01.turn(left,2)
spiderRobot.turn(left,2)
spiderRobot.neck.head.turn(left,2)
Slide 8 (noting that “eskimo” should be “inuit”...)
PARALLEL
eskimoGirl.say(“Hello”)
AND
eskimoGirl.move(up,0.5)
AND
eskimoGirl.move(down,0.5)
END PARALLEL
Slide 9
PARALLEL
eskimoGirl.say(“Hello”)
AND
eskimoGirl.move(down,0.5)
eskimoGirl.move(up,0.5)
PARALLEL
eskimoGirl.say(“Hello”)
END PARALLEL
eskimoGirl.move(down,0.5)
eskimoGirl.move(up,0.5)
eskimoGirl.say(“Hello”)
PARALLEL
eskimoGirl.move(down,0.5)
AND
eskimoGirl.move(up,0.5)
END PARALLEL
Jeremy Scott Smartphone Student Examples
p12
WHEN ButtonPet.Click() DO
Sound.Play()
Sound.Vibrate(500)
END WHEN
p13
WHEN AccelerometerSensor.Shaking() DO
Sound.Play()
Sound.Vibrate(500)
END WHEN
p14
PARALLEL
WHEN ButtonCat.Click() DO
CanvasAnimal.BackgroundImage <== “cat.png”
Sound.Play()
AND
WHEN ButtonDog.Click() DO
CanvasAnimal.BackgroundImage <== “dog.png”
Sound.Play()
AND
WHEN CanvasAnimal.Dragged(startX,startY,prevX,prevY,
current,currentY,draggedSprite) DO
Sound.Play()
END PARALLEL
p16
PARALLEL
WHEN ButtonBlue.Click() DO drawColour(Blue)
AND
WHEN ButtonGreen.Click() DO drawColour(Green)
AND
WHEN ButtonRed.Click() DO drawColour(Red)
AND
WHEN DrawingCanvas.Touched(x,y,touchedSprite) DO
drawCircle(x,y,10)
AND
WHEN ButtonWipe.Click() Do clear()
AND
WHEN ButtonSmall.Click() DO lineWidth(5)
AND
WHEN ButtonBig.Click() DO lineWidth(15)
AND
WHEN DrawingCanvas.Dragged(startX,startY,prevX,prevY,
current,currentY,draggedSprite) DO
line(prevX,prevY,current,currentY)
END PARALLEL
p19
SET brushSize TO 5
WHEN ButtonBigBrush.Click() DO
brushSize < brushSize+1
lineWidth (brushSize)
END WHEN
p20
WHEN ButtonSave.Click() DO
TinyDB1.StoreValue(“FingerPainting.png”,DrawingCanvas.Save())
END WHEN
p22
SET brushSize TO 0
WHEN ButtonBigBrush.Click() DO
lineWidth (brushSize)
SET brushSize TO brushSize+1
END WHEN
p27
WHEN ButtonReset.Click() DO
SET LabelHitsNumber.Text TO hits
SET LabelMissesNumber.Text TO misses
SET misses TO 0
SET hits TO 0
END WHEN
p31
make_text(counter,tableNumber,tableNumber*counter)
p35
WHEN ButtonCreateTable.Click() DO
IF is_text_empty(TextBoxTableNumber.Text)
NotifierErrorBox.ShowMesageDialog
(“You must enter a number”,”Error”,”OK”)
ELSE
SET tableNumber TO TextBoxNumber.Text
TableHeader()
END WHEN
p40
WHEN LocationSensor.LocationChanged(latitude,longitude,altitude) DO
SET LabelCurrentLocation.Text TO
make_text(“Current location:”, “\n”,LocationSensor.CurrentAddress)
END WHEN
p41
WHILE password ≠ ”sesame” DO
Notifier.ShowAlert(“Wrong password!”)
END WHILE
Share with your friends: |