Rare Earth Mining Affirmative– cndi 2014



Download 447.55 Kb.
Page10/13
Date03.06.2017
Size447.55 Kb.
#19943
1   ...   5   6   7   8   9   10   11   12   13

Solvency Neg

No Solvency – Extraction




Mining won’t displace China – deposits aren’t extractable even with funding.


Goodier 11 (Rob Goodier, M.A., Journalism: Science, Health and Environment Reporting Program @ NYU, Popular Mechanics, “Why Deep-Sea Rare-Earth Metals Will Stay Right Where They Are—For Now”, 7/8/11, http://www.popularmechanics.com/science/environment/why-deep-sea-rare-earth-metals-will-stay-right-where-they-are-for-now)

This week, scientists at the University of Tokyo announced a discovery that threatened to break China's control over the world's supply of rare-earth metals, used to build electronics: They found the metals in vast expanses of mud on the floor of the Pacific Ocean in 78 sites. Predictably, the news made a worldwide media splash. A close look at the deep-sea mining industry, however, suggests that miners in China will not be out of work soon. And the world has known about metals on the ocean floor for decades. Rare-earth magnets and other components are used in electronic devices from computers to electric cars, and demand has surged in the last decade. Mines in China supply nearly all of the world's rare-earths metal, and the Chinese government uses its near monopoly as political leverage: It was accused of halting rare-earth exports to Japan during a territorial dispute last year, and also announced a restriction of worldwide rare-earth exports, which sent chills through markets and tech companies. The United States, Canada, Brazil and other countries possess reserves, and the U.S. used to produce a sizeable percentage of the world supply before shutting many mines because of environmental concerns. Those deposits may be exploited in the next few years, though China's huge deposits and existing infrastructure guarantee that it will lead production for the near future. So it's no surprise that the Japanese study, which appears in the journal Nature Geoscience, sparked excitement. The researchers took core samples at 78 sites around Hawaii, Tahiti and other locations in the eastern South Pacific and central North Pacific, finding rare-earth concentrations of about 0.2 percent. At that concentration, they reported, just 1 square kilometer of sea-floor mud could provide one-fifth of the world's annual rare-earth consumption, making it a "highly promising huge resource for these elements." Without context, though, that kind of statement is misleading, says Frank Sansone, an oceanography professor at the University of Hawaii, Manoa. "It's not just something that you can glibly say, 'Oh, this is a huge amount of rare earth,'" he says. "It would be difficult to exploit. There's a big difference between saying that the elements exist in large amounts and being able to appropriately, economically and environmentally extract that material." John Wiltshire, director of the Hawaii Undersea Research Laboratory, also at the University of Hawaii, Manoa, puts it even more bluntly. "The truth of the matter is, nobody's going to mine in the deep sea—even if somebody massively funds this—for a minimum of a decade," he says. The startup cost could run from $1 to $2 billion. It's not that we don't know how to work in the deep sea, Wiltshire points out. Telegraph cables were first laid across the ocean floor 150 years ago, and at least three industries—telecommunications, oil drilling and diamond mining—have become adept at deep-sea engineering. Today, telecom cables are buried in deep trenches to guard against accidents such as damage by fishing trawlers. Oil rigs drill thousands of feet into the sea floor from floating platforms. And a handful of companies mine diamonds in several hundred feet of water off the coast of Namibia in southwest Africa; they drop remote-controlled seafloor crawlers to the ocean floor that, like pool cleaners, inhale sediment that is pumped to an overhead ship through a hose. Deep-sea rare-earth deposits aren't new, either. Wiltshire, Sansone and many other researchers have been studying mineral deposits—including rare-earth mineral deposits—on the ocean floor since their careers began. "I published a paper on this 25 years ago. The first papers that indicated rare-earth minerals go back 30 or 35 years," Wiltshire says. "People have been talking about mining manganese nodules since the 1960s," Manganese nodules are conglomerates of metallic particles—rare-earth metals and others—stripped from the water over eons, and they were the hot undersea mining topic of decades past. Manganese nodule mining even provided cover for a bit of Cold War intrigue in 1974, when a $350 million deep-sea drilling ship built by one of Howard Hughes' companies supposedly went looking for a deposit to develop. In fact, the ship was being used by the CIA to look for a Soviet nuclear sub that had sunk off Oahu in the 1960s. Today, though, as in the 1970s, cost and time remain enormous hurdles to mining these deposits. Wiltshire says a proposed deep-sea mine off the coast of Papua New Guinea illustrates the challenges that would face anyone looking to start a rare-earth operation in the Pacific Ocean. Nautilus Minerals plans to build a $157 million ship to support what could be the world's only deep-sea gold and copper mine. The ship, floating about three miles above the seafloor, will need to be gigantic: 680 feet long, with a deadweight capacity of more than 20,000 tons and bunks for up to 160 people.

No Solvency – Refining




Mining isn’t sufficient – inability to refine into usable forms maintains Chinese reliance.


Kennedy 14 (Jim Kennedy, President of Wings Enterprises, internationally recognized expert on rare earths, “China’s Rare Earth Monopoly and its formidable impact on U.S. National Defense”, 1/29/14, http://investorintel.com/rare-earth-intel/chinas-rare-earth-monopoly-formidable-impact-u-s-national-defense/)

U.S. mining of rare earths is pointless if it isn’t able to refine these resources into value added DoD ready commodities: China maintains a global monopoly on all refining, metallurgical, alloy and component technologies as well as OEM and material science facilities. U.S., Japanese, Korean and European businesses are relocating to China to secure access to these materials, including those used by National Defense. For instance, in 2013, GM established a new Technology Science Laboratory in China. As an example, a Chinese corporation was granted approval to purchase the assets of A123 battery. A123 was the centerpiece of the Obama Administration’s drive for electric vehicles. The fact that GE moved the last of its medical imaging divisions to China provides further proof. Over the last decade nearly every major multinational relying on REE’s has moved its manufacturing facilities, established subsidiaries and suppliers in China to gain access to these materials in what is a labor and technology drain that is undermining our economic future. The U.S. should establish in my opinion – a fully integrated REE refinery value chain in North America.


Download 447.55 Kb.

Share with your friends:
1   ...   5   6   7   8   9   10   11   12   13




The database is protected by copyright ©ininet.org 2024
send message

    Main page