The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review



Download 369.99 Kb.
Page4/5
Date03.06.2017
Size369.99 Kb.
#19958
1   2   3   4   5

Table 13. Microorganisms which are able to convert glucose to ethanol and ethanol to acetate under anaerobic conditions (adapted from 81, 82, 89, 154-159)

Microorganism

Microorganism type

Glucose to ethanol

Clostridium thermocellum

Bacterium

Clostridium thermohydrosulfuricum

Bacterium

Thermoanaerobium brockii

Bacterium

Sarcina ventriculi

Bacterium

Thermoanaerobacter ethanolicus

Bacterium

Ruminococcus albus

Bacterium

Saccharomyces cerevisiae

Yeast

Zymomonas mobilis

Bacterium

Aspergillus spp.

Fungus

Fusarium spp.

Fungus

Penicillum spp.

Fungus

Schizosaccharomyces pombe

Yeast

Kluyveromyces marxianus

Yeast

Ethanol to organic acids

Desulfotomaculum nigrificans

Bacterium

Pelobacter acetylenicus

Bacterium

Desulfovibrio spp.

Bacterium

Desulfobulbus propionicus

Bacterium

Pelobacter propionicus

Bacterium

Table 14. Glucose fermentation to ethanol by mixed cultures in chemostat studies

Residence time (h)

pH

Temp. (OC)

Ethanol yield (mol/mol glucose)

Ethanol rate (g/L/h)

Other main productsa

Ref

8

6.25-8.5

30

0.55-0.70

0.07-0.09

acetate

13

5-12

8

37

0.1-0.25

0.02-0.08

acetate, propionate

80

6

4-7

36

0.08-0.17

0.025-0.05

acetate, butyrate

77

3-4

8

30

0.7

0.5

acetate

79

72

5

35

0.18

0.02

acetate

78

1.5-10

5.8

20-60

0.1-0.8

1.5

acetate, butyrate

83

a In all the studies the main products in the gas phase were hydrogen and carbon dioxide

Table 15. Microorganisms which are able to convert xylose to ethanol under anaerobic conditions

Microorganism

Microorganism type

Bacillus macerans

Bacterium

Clostridium thermohydrosulfuricum

Bacterium

Thermoanaerobacter ethanolicus

Bacterium

Aerobacter aerogenes

Bacterium

Fusarium oxysporum

Fungus

Aeromonas hydrophila

Bacterium

Bacillus polymixa

Bacterium

Aerobacter indologenes

Bacterium

Brettanomyces spp.

Yeast

Candida shehatae

Yeast

Pachysolen tannophilus

Yeast

Pichia stipitis

Yeast

Monilia spp.

Fungus

Mucor spp.

Fungus

Neurospora spp.

Fungus

Paecilomyces spp.

Fungus

Polyporus spp.

Fungus

Rhizopus spp.

Fungus

Table 16. Glucose and xylose fermentation to ethanol by genetically modified microorganisms

Microorganism

pH

Temp. (OC)

Ethanol yield (mol/mol sugar)

Ethanol rate (g/L/h)

Ref

Glucose

Erwinia sp. SR38

6.0

30

1.9

0.7

160

Klebsiella oxytoca M5A1

6.0

30

2.0

2.1

98

Lactobacillus casei 686




37

0.8

0.18

161

Lactobacillus plantarum




37

0.9

0.02

100

Xylose

Klebsiella oxytoca M5A1

6.0

30

1.6

2.0

98

Klebsiella oxytoca M5A1

6.0

30

1.7

1.3

162

Escherichia coli LY160

6.5

37

1.6

0.9

99

Saccharomyces cerevisiae 424A




30

0.7

0.13

163

Saccharomyces cerevisiae MA-R5




30

1.2

0.50

164

Saccharomyces cerevisiae DA24-16




30

1.3

1.3

165

Saccharomyces cerevisiae ADAP8




30

1.1-1.4

0.03-0.07

166


A

Lignocellulosic biomass

Combined reactor for lignin hydrolysis, cellulose hydrolysis and carbohydrates fermentation (anaerobic)



Ethanol to purification



B



cellulose

carbohydrates

Cellulose hydrolysis

Ethanol to purification

Lignin hydrolysis

Fermentation

Lignocellulosic biomass



C



cellulase

Cellulase production

Ethanol to purification

Cellulose hydrolysis and fermentation

cellulose

Chemical or physical pretreatments

Lignocellulosic biomass



Lignocellulosic biomass

D



Ethanol to purification

cellulose

Combined reactor for cellulose hydrolysis and carbohydrates fermentation (anaerobic)

Chemical or physical pretreatments


Figure 1. Possible schemes for conversion of lignocellulosic biomass to ethanol. A) and B) are the entirely microbial processes considered in this study. Scheme C) is SSCF, scheme D) is CBP. See text for definitions of abbreviations. Not all the material flows are shown in the schemes and “cellulose” also include hemicellulose.



Figure 2. Possible products of anaerobic fermentation of glucose in a mixed culture environment with associated electron flow. Electron equivalents (e-eq) represent the moles of electrons which would be released upon complete oxidation.

References

1. Soccol CR, Faraco V, Karp S, Vandenberghe LPS, Thomaz-Soccol V, Woiciechowski A and Pandey A, Lignocellulosic bioethanol: Current status and future perspectives, in Biofuels: alternative feedstocks and conversion processes, ed by Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E. Elsevier, Amsterdam, pp. 101-122 (2011).

2. Bohlmann GM, Process economic considerations for production of ethanol from biomass feedstocks. Ind Biotechnol 2:14-20 (2006).

3. High Level Panel of Experts on Food Security and Nutrition (HLPE), Biofuels and food security. Committee on World Food Security, Rome (2013).

4. Pool R, Brewing a better biofuel. Eng & Technol 9:56-59 (2014).

5. Balat M, Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Ener Conv Manag 52:858-875 (2011).

6. Walker GM, Fuel alcohol: Current production and future challenges. J Inst Brew 117:3–22 (2011).

7. Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B, Holtzapple MT, Ladisch MR, Lee Y and Mosier N, Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102:11052-11062 (2011).

8. Olsson L and Hahn-Hägerdal B, Fermentation of lignocellulosic hydrolysates for ethanol production. Enz Microbial Technol 18:312-331 (1996).

9. Lynd LR, Weimer PJ, Van Zyl WH and Pretorius IS, Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Molec Biol Rev 66:506-577 (2002).

10. Kleerebezem R and van Loosdrecht M, Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207-212 (2007).

11. Alatriste-Mondragon F, Samar P, Cox HH, Ahring BK and Iranpour R, Anaerobic codigestion of municipal, farm, and industrial organic wastes: A survey of recent literature. Water Environ Res 78:607-636 (2006).

12. Li C and Fang HH, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1-39 (2007).

13. Temudo MF, Kleerebezem R and van Loosdrecht M, Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study. Biotechnol Bioeng 98:69-79 (2007).

14. Dionisi D, Majone M, Vallini G, Gregorio SD and Beccari M, Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing batch reactor. Biotechnol Prog 23:1064-1073 (2007).

15. Villano M, Beccari M, Dionisi D, Lampis S, Miccheli A, Vallini G and Majone M, Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Proc Biochem 45:714-723 (2010).

16. Reis M, Serafim L, Lemos P, Ramos A, Aguiar F and Van Loosdrecht M, Production of polyhydroxyalkanoates by mixed microbial cultures. Bioproc Bios Eng 25:377-385 (2003).

17. Pham M, Holtzapple M and El-Halwagi M, Techno-economic analysis of biomass to fuel conversion via the MixAlco process. J Ind Microbiol Biotechnol 37:1157-1168 (2010).

18. Dien B, Cotta M and Jeffries T, Bacteria engineered for fuel ethanol production: Current status. Appl Microbiol Biotechnol 63:258-266 (2003).

19. Matsushika A, Inoue H, Kodaki T and Sawayama S, Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives. Appl Microbiol Biotechnol 84:37-53 (2009).

20. Jeffries TW, Biodegradation of lignin and hemicelluloses. ed by Ratledge C, Kluwer Academic Publishers, The Netherlands, 233-277 (1994).

21. Kirk TK and Farrell RL, Enzymatic "combustion": The microbial degradation of lignin. Ann Rev Microbiol 41:465-505 (1987).

22. Kraemer EO, Molecular weights of celluloses and cellulose derivates. Ind Eng Chem 30:1200-1203 (1938).

23. Pérez J, Munoz-Dorado J, De la Rubia T and Martinez J, Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int Microbiol 5:53-63 (2002).

24. Hatfield R and Fukushima RS, Can lignin be accurately measured? Crop Sci 45:832-839 (2005).

25. Brigham J, Adney W and Himmel M. Hemicelluloses: Diversity and applications. Handbook on bioethanol: production and utilization.Taylor and Fran cis/Ed.CE Wyman :119-142 (1996).

26. Field JA, Limits of anaerobic biodegradation. Wat Sci Technol 45:9-18 (2002).

27. Zimmermann W, Degradation of lignin by bacteria. J Biotechnol 13:119-130 (1990).

28. Silanikove N and Brosh A, Lignocellulose degradation and subsequent metabolism of lignin fermentation products by the desert black bedouin goat fed on wheat straw as a single-component diet. Br J Nutr 62:509-520 (1989).

29. Benner R, Maccubin AE and Hodson RE, Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl Envir Microbiol 47:998-1004 (1984).

30. Chen W, Ohmiya K, Shimizu S and Kawakami H, Degradation of dehydrovanillin by anaerobic bacteria from cow rumen fluid. Appl Envir Microbiol 54:1254-1257 (1985).

31. Fuchs G, Anaerobic metabolism of aromatic compounds. Ann N Y Acad Sci 1125:82-99 (2008).

32. Kataeva I, Foston MB, Yang S, Pattathil S, Biswal AK, Poole FL, Basen M, Rhaesa AM, Thomas TP and Azadi P, Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Ener Environ Sci 6:2186-2195 (2013).

33. Sharma SK, Mishra IM, Sharma MP and Saini JS, Effect of particle size on biogas generation from biomass residues. Biom 17:251-263 (1988).

34. Turick CE, Peck MW, Chynoweth DP, Jerger DE, White EH, Zsuffa L and Andy Kenney W, Methane fermentation of woody biomass. Bioresour Technol 37:141-147 (1991).

35. Triolo JM, Sommer SG, Moller HB, Weisbjerg MR and Jiang XY, A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Biores Technol 102:9395-9402 (2011).

36. Tong X, Smith LH and McCarty PL, Methane fermentation of selected lignocellulosic materials. Biom 21:239-255 (1990).

37. Nallathambi Gunaseelan V, Anaerobic digestion of biomass for methane production: A review. Biom Bioen 13:83-114 (1997)

38. Malherbe S and Cloete TE, Lignocellulose biodegradation: Fundamentals and applications. Rev Envir Sci Biotechn 1:105-14 (2002).

39. Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho N, Hofrichter M and Rogalski J, Biodegradation of lignin by white rot fungi. Fung Gen Biol 27:175-185 (1999).

40. Kirk TK, Schultz E, Connors W, Lorenz L and Zeikus J, Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277-285 (1978).

41. Sørensen H, Decomposition of lignin by soil bacteria and complex formation between autoxidized lignin and organic nitrogen compounds. J Gen Microbiol 27:21-34 (1962).

42. Kerem Z, Friesem D and Hadar Y, Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1121-1127 (1992).

43. Zhang X, Yu H, Huang H and Lio Y, Evaluation of biological pretreatment with withe rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 60:159-164 (2007).

44. Keller FA, Hamilton JE and Nguyen QA, Microbial pretreatment of biomass. Appl Biochem Biotechnol 105:27-41 (2003).

45. Lee J, Gwak K, Park J, Park M, Choi D, Kwon M and Choi I, Biological pretreatment of softwood pinus densiflora by three white rot fungi. J Microbiol 45:485-491 (2007).

46. Hwang SS, Lee SJ, Kim HK, Ka JO, Kim KJ and Song HG, Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi. J Microbiol Biotechnol 18:1819-1825 (2008).

47. Shi J, Chinn MS and Sharma-Shivappa RR, Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99:6556-6564 (2008).

48. Zimmermann W and Broda P, Utilization of lignocellulose from barley straw by actinomyycetes. Appl Microbiol Biotechnol 30:103-109 (1989).

49. Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi MST and Mattiasson B, Effect of particle size on biogas yield from sisal fibre waste. Renew Ener 31:2385-2392 (2006).

50. Hisano H, Nandakumar R and Wang Z, Genetic modification of lignin biosynthesis for improved biofuel production. In Vit Cell Develop Biol-Plant 45:306-313 (2009).

51. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A and Bouton J, Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Nat Acad Sci 108:3803-3808 (2011).

52. Weng J, Li X, Bonawitz ND and Chapple C, Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166-172 (2008).

53. Wymelenberg AV, Sabat G, Mozuch M, Kersten PJ, Cullen D and Blanchette RA, Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 72:4871-4877 (2006).

54. Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC and Larimer F, Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol


Directory: bitstream -> 2164
bitstream -> Images of Fairfax in Modern Literature and Film Andrew Hopper
bitstream -> Amphitheater High School’s Outdoor Classroom: a study in the Application of Design
bitstream -> Ethics of Climate Change: Adopting an Empirical Approach to Moral Concern
bitstream -> The Age of Revolution in the Indian Ocean, Bay of Bengal and South China Sea: a maritime Perspective
bitstream -> Methodism and Culture
bitstream -> Review of coastal ecosystem management to improve the health and resilience of the Great Barrier Reef World Heritage Area
bitstream -> Present state of the area
2164 -> The bilingual race /And truth of that water’: Seamus Heaney and the Irish Language
2164 -> After the British World
2164 -> Towards a framework for the quantitative assessment of trawling impact on the seabed and benthic ecosystem

Download 369.99 Kb.

Share with your friends:
1   2   3   4   5




The database is protected by copyright ©ininet.org 2024
send message

    Main page