Table 13. Microorganisms which are able to convert glucose to ethanol and ethanol to acetate under anaerobic conditions (adapted from 81, 82, 89, 154-159)
Microorganism
|
Microorganism type
|
Glucose to ethanol
|
Clostridium thermocellum
|
Bacterium
|
Clostridium thermohydrosulfuricum
|
Bacterium
|
Thermoanaerobium brockii
|
Bacterium
|
Sarcina ventriculi
|
Bacterium
|
Thermoanaerobacter ethanolicus
|
Bacterium
|
Ruminococcus albus
|
Bacterium
|
Saccharomyces cerevisiae
|
Yeast
|
Zymomonas mobilis
|
Bacterium
|
Aspergillus spp.
|
Fungus
|
Fusarium spp.
|
Fungus
|
Penicillum spp.
|
Fungus
|
Schizosaccharomyces pombe
|
Yeast
|
Kluyveromyces marxianus
|
Yeast
|
Ethanol to organic acids
|
Desulfotomaculum nigrificans
|
Bacterium
|
Pelobacter acetylenicus
|
Bacterium
|
Desulfovibrio spp.
|
Bacterium
|
Desulfobulbus propionicus
|
Bacterium
|
Pelobacter propionicus
|
Bacterium
|
Table 14. Glucose fermentation to ethanol by mixed cultures in chemostat studies
Residence time (h)
|
pH
|
Temp. (OC)
|
Ethanol yield (mol/mol glucose)
|
Ethanol rate (g/L/h)
|
Other main productsa
|
Ref
|
8
|
6.25-8.5
|
30
|
0.55-0.70
|
0.07-0.09
|
acetate
|
13
|
5-12
|
8
|
37
|
0.1-0.25
|
0.02-0.08
|
acetate, propionate
|
80
|
6
|
4-7
|
36
|
0.08-0.17
|
0.025-0.05
|
acetate, butyrate
|
77
|
3-4
|
8
|
30
|
0.7
|
0.5
|
acetate
|
79
|
72
|
5
|
35
|
0.18
|
0.02
|
acetate
|
78
|
1.5-10
|
5.8
|
20-60
|
0.1-0.8
|
1.5
|
acetate, butyrate
|
83
|
a In all the studies the main products in the gas phase were hydrogen and carbon dioxide
Table 15. Microorganisms which are able to convert xylose to ethanol under anaerobic conditions
Microorganism
|
Microorganism type
|
Bacillus macerans
|
Bacterium
|
Clostridium thermohydrosulfuricum
|
Bacterium
|
Thermoanaerobacter ethanolicus
|
Bacterium
|
Aerobacter aerogenes
|
Bacterium
|
Fusarium oxysporum
|
Fungus
|
Aeromonas hydrophila
|
Bacterium
|
Bacillus polymixa
|
Bacterium
|
Aerobacter indologenes
|
Bacterium
|
Brettanomyces spp.
|
Yeast
|
Candida shehatae
|
Yeast
|
Pachysolen tannophilus
|
Yeast
|
Pichia stipitis
|
Yeast
|
Monilia spp.
|
Fungus
|
Mucor spp.
|
Fungus
|
Neurospora spp.
|
Fungus
|
Paecilomyces spp.
|
Fungus
|
Polyporus spp.
|
Fungus
|
Rhizopus spp.
|
Fungus
|
Table 16. Glucose and xylose fermentation to ethanol by genetically modified microorganisms
Microorganism
|
pH
|
Temp. (OC)
|
Ethanol yield (mol/mol sugar)
|
Ethanol rate (g/L/h)
|
Ref
|
Glucose
|
Erwinia sp. SR38
|
6.0
|
30
|
1.9
|
0.7
|
160
|
Klebsiella oxytoca M5A1
|
6.0
|
30
|
2.0
|
2.1
|
98
|
Lactobacillus casei 686
|
|
37
|
0.8
|
0.18
|
161
|
Lactobacillus plantarum
|
|
37
|
0.9
|
0.02
|
100
|
Xylose
|
Klebsiella oxytoca M5A1
|
6.0
|
30
|
1.6
|
2.0
|
98
|
Klebsiella oxytoca M5A1
|
6.0
|
30
|
1.7
|
1.3
|
162
|
Escherichia coli LY160
|
6.5
|
37
|
1.6
|
0.9
|
99
|
Saccharomyces cerevisiae 424A
|
|
30
|
0.7
|
0.13
|
163
|
Saccharomyces cerevisiae MA-R5
|
|
30
|
1.2
|
0.50
|
164
|
Saccharomyces cerevisiae DA24-16
|
|
30
|
1.3
|
1.3
|
165
|
Saccharomyces cerevisiae ADAP8
|
|
30
|
1.1-1.4
|
0.03-0.07
|
166
|
A
Lignocellulosic biomass
Combined reactor for lignin hydrolysis, cellulose hydrolysis and carbohydrates fermentation (anaerobic)
Ethanol to purification
B
cellulose
carbohydrates
Cellulose hydrolysis
Ethanol to purification
Lignin hydrolysis
Fermentation
Lignocellulosic biomass
C
cellulase
Cellulase production
Ethanol to purification
Cellulose hydrolysis and fermentation
cellulose
Chemical or physical pretreatments
Lignocellulosic biomass
Lignocellulosic biomass
D
Ethanol to purification
cellulose
Combined reactor for cellulose hydrolysis and carbohydrates fermentation (anaerobic)
Chemical or physical pretreatments
Figure 1. Possible schemes for conversion of lignocellulosic biomass to ethanol. A) and B) are the entirely microbial processes considered in this study. Scheme C) is SSCF, scheme D) is CBP. See text for definitions of abbreviations. Not all the material flows are shown in the schemes and “cellulose” also include hemicellulose.
Figure 2. Possible products of anaerobic fermentation of glucose in a mixed culture environment with associated electron flow. Electron equivalents (e-eq) represent the moles of electrons which would be released upon complete oxidation.
References
1. Soccol CR, Faraco V, Karp S, Vandenberghe LPS, Thomaz-Soccol V, Woiciechowski A and Pandey A, Lignocellulosic bioethanol: Current status and future perspectives, in Biofuels: alternative feedstocks and conversion processes, ed by Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E. Elsevier, Amsterdam, pp. 101-122 (2011).
2. Bohlmann GM, Process economic considerations for production of ethanol from biomass feedstocks. Ind Biotechnol 2:14-20 (2006).
3. High Level Panel of Experts on Food Security and Nutrition (HLPE), Biofuels and food security. Committee on World Food Security, Rome (2013).
4. Pool R, Brewing a better biofuel. Eng & Technol 9:56-59 (2014).
5. Balat M, Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Ener Conv Manag 52:858-875 (2011).
6. Walker GM, Fuel alcohol: Current production and future challenges. J Inst Brew 117:3–22 (2011).
7. Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B, Holtzapple MT, Ladisch MR, Lee Y and Mosier N, Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102:11052-11062 (2011).
8. Olsson L and Hahn-Hägerdal B, Fermentation of lignocellulosic hydrolysates for ethanol production. Enz Microbial Technol 18:312-331 (1996).
9. Lynd LR, Weimer PJ, Van Zyl WH and Pretorius IS, Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Molec Biol Rev 66:506-577 (2002).
10. Kleerebezem R and van Loosdrecht M, Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207-212 (2007).
11. Alatriste-Mondragon F, Samar P, Cox HH, Ahring BK and Iranpour R, Anaerobic codigestion of municipal, farm, and industrial organic wastes: A survey of recent literature. Water Environ Res 78:607-636 (2006).
12. Li C and Fang HH, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1-39 (2007).
13. Temudo MF, Kleerebezem R and van Loosdrecht M, Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study. Biotechnol Bioeng 98:69-79 (2007).
14. Dionisi D, Majone M, Vallini G, Gregorio SD and Beccari M, Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing batch reactor. Biotechnol Prog 23:1064-1073 (2007).
15. Villano M, Beccari M, Dionisi D, Lampis S, Miccheli A, Vallini G and Majone M, Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Proc Biochem 45:714-723 (2010).
16. Reis M, Serafim L, Lemos P, Ramos A, Aguiar F and Van Loosdrecht M, Production of polyhydroxyalkanoates by mixed microbial cultures. Bioproc Bios Eng 25:377-385 (2003).
17. Pham M, Holtzapple M and El-Halwagi M, Techno-economic analysis of biomass to fuel conversion via the MixAlco process. J Ind Microbiol Biotechnol 37:1157-1168 (2010).
18. Dien B, Cotta M and Jeffries T, Bacteria engineered for fuel ethanol production: Current status. Appl Microbiol Biotechnol 63:258-266 (2003).
19. Matsushika A, Inoue H, Kodaki T and Sawayama S, Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives. Appl Microbiol Biotechnol 84:37-53 (2009).
20. Jeffries TW, Biodegradation of lignin and hemicelluloses. ed by Ratledge C, Kluwer Academic Publishers, The Netherlands, 233-277 (1994).
21. Kirk TK and Farrell RL, Enzymatic "combustion": The microbial degradation of lignin. Ann Rev Microbiol 41:465-505 (1987).
22. Kraemer EO, Molecular weights of celluloses and cellulose derivates. Ind Eng Chem 30:1200-1203 (1938).
23. Pérez J, Munoz-Dorado J, De la Rubia T and Martinez J, Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int Microbiol 5:53-63 (2002).
24. Hatfield R and Fukushima RS, Can lignin be accurately measured? Crop Sci 45:832-839 (2005).
25. Brigham J, Adney W and Himmel M. Hemicelluloses: Diversity and applications. Handbook on bioethanol: production and utilization.Taylor and Fran cis/Ed.CE Wyman :119-142 (1996).
26. Field JA, Limits of anaerobic biodegradation. Wat Sci Technol 45:9-18 (2002).
27. Zimmermann W, Degradation of lignin by bacteria. J Biotechnol 13:119-130 (1990).
28. Silanikove N and Brosh A, Lignocellulose degradation and subsequent metabolism of lignin fermentation products by the desert black bedouin goat fed on wheat straw as a single-component diet. Br J Nutr 62:509-520 (1989).
29. Benner R, Maccubin AE and Hodson RE, Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl Envir Microbiol 47:998-1004 (1984).
30. Chen W, Ohmiya K, Shimizu S and Kawakami H, Degradation of dehydrovanillin by anaerobic bacteria from cow rumen fluid. Appl Envir Microbiol 54:1254-1257 (1985).
31. Fuchs G, Anaerobic metabolism of aromatic compounds. Ann N Y Acad Sci 1125:82-99 (2008).
32. Kataeva I, Foston MB, Yang S, Pattathil S, Biswal AK, Poole FL, Basen M, Rhaesa AM, Thomas TP and Azadi P, Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Ener Environ Sci 6:2186-2195 (2013).
33. Sharma SK, Mishra IM, Sharma MP and Saini JS, Effect of particle size on biogas generation from biomass residues. Biom 17:251-263 (1988).
34. Turick CE, Peck MW, Chynoweth DP, Jerger DE, White EH, Zsuffa L and Andy Kenney W, Methane fermentation of woody biomass. Bioresour Technol 37:141-147 (1991).
35. Triolo JM, Sommer SG, Moller HB, Weisbjerg MR and Jiang XY, A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Biores Technol 102:9395-9402 (2011).
36. Tong X, Smith LH and McCarty PL, Methane fermentation of selected lignocellulosic materials. Biom 21:239-255 (1990).
37. Nallathambi Gunaseelan V, Anaerobic digestion of biomass for methane production: A review. Biom Bioen 13:83-114 (1997)
38. Malherbe S and Cloete TE, Lignocellulose biodegradation: Fundamentals and applications. Rev Envir Sci Biotechn 1:105-14 (2002).
39. Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho N, Hofrichter M and Rogalski J, Biodegradation of lignin by white rot fungi. Fung Gen Biol 27:175-185 (1999).
40. Kirk TK, Schultz E, Connors W, Lorenz L and Zeikus J, Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277-285 (1978).
41. Sørensen H, Decomposition of lignin by soil bacteria and complex formation between autoxidized lignin and organic nitrogen compounds. J Gen Microbiol 27:21-34 (1962).
42. Kerem Z, Friesem D and Hadar Y, Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1121-1127 (1992).
43. Zhang X, Yu H, Huang H and Lio Y, Evaluation of biological pretreatment with withe rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 60:159-164 (2007).
44. Keller FA, Hamilton JE and Nguyen QA, Microbial pretreatment of biomass. Appl Biochem Biotechnol 105:27-41 (2003).
45. Lee J, Gwak K, Park J, Park M, Choi D, Kwon M and Choi I, Biological pretreatment of softwood pinus densiflora by three white rot fungi. J Microbiol 45:485-491 (2007).
46. Hwang SS, Lee SJ, Kim HK, Ka JO, Kim KJ and Song HG, Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi. J Microbiol Biotechnol 18:1819-1825 (2008).
47. Shi J, Chinn MS and Sharma-Shivappa RR, Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99:6556-6564 (2008).
48. Zimmermann W and Broda P, Utilization of lignocellulose from barley straw by actinomyycetes. Appl Microbiol Biotechnol 30:103-109 (1989).
49. Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi MST and Mattiasson B, Effect of particle size on biogas yield from sisal fibre waste. Renew Ener 31:2385-2392 (2006).
50. Hisano H, Nandakumar R and Wang Z, Genetic modification of lignin biosynthesis for improved biofuel production. In Vit Cell Develop Biol-Plant 45:306-313 (2009).
51. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A and Bouton J, Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Nat Acad Sci 108:3803-3808 (2011).
52. Weng J, Li X, Bonawitz ND and Chapple C, Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166-172 (2008).
53. Wymelenberg AV, Sabat G, Mozuch M, Kersten PJ, Cullen D and Blanchette RA, Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 72:4871-4877 (2006).
54. Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC and Larimer F, Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol
Share with your friends: |