The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review



Download 369.99 Kb.
Page5/5
Date03.06.2017
Size369.99 Kb.
#19958
1   2   3   4   5
22:695-700 (2004).

55. Shi Y, Weimer P. Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Appl Environ Microbiol 58:2583-2591 (1992).

56. Weimer PJ, Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture. Arch Microbiol 160:288-294 (1993).

57. Hu Z, Yu H and Zhu R. Influence of particle size and pH on anaerobic degradation of cellulose by ruminal microbes. Int Biodeterior Biodegrad 55:233-238 (2005).

58. Hu Z, Wang G and Yu H, Anaerobic degradation of cellulose by rumen microorganisms at various pH values. Biochem Eng J 21:59-62 (2004).

59. Bergquist PL, Gibbs MD, Morris DD, Te'o V, Saul DJ and Morgan HW, Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28:99-110 (1999).

60. Veeken A, Kalyuzhnyi S, Scharff H and Hamelers B, Effect of pH and VFA on hydrolysis of organic solid waste. J Environ Eng 126:1076-1081 (2000).

61. Dionisi D, Analysis of the effect of cellulose particle size on the rate of microbial hydrolysis for bioethanol production. Ener Technol, 1:675-684 (2013).

62. Weimer P, Lopez-Guisa J and French A, Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro. Appl Environ Microbiol 56:2421-2429 (1990).

63. Chyi YT and Dague RR, Effects of particulate size in anaerobic acidogenesis using cellulose as a sole carbon source. Water Environ Res 66:670-678 (1994).

64. Brestic-Goachet N, Gunasekaran P, Cami B and Baratti JC, Transfer and expression of an Erwinia chrysanthemi cellulase gene in Zymomonas mobilis. J Gen Microbiol 135:893-902 (1989).

65. Zhou S, Davis F and Ingram L, Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2. Appl Environ Microbiol 67:6-14 (2001).

66. Zhou S and Ingram L, Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase. Biotechnol Lett 23:1455-1462 (2001).

67. Myung K and Yoo YJ, Novel SSF process for ethanol production from microcrystalline cellulose using the δ-integrated recombinant yeast, Saccharomyces cerevisiae L2612δGC. J Microbiol Biotechnol 9:340-345 (1999).

68. Den Haan R, Rose SH, Lynd LR and van Zyl WH, Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87-94 (2007).

69. Yamada R, Yamakawa S, Tanaka T, Ogino C, Fukuda H and Kondo A. Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases. Enz Microb Technol 48:393-396 (2011).

70. Abreu AA, Karakashev D, Angelidaki I, Sousa DZ and Alves MM, Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures. Biotechnol Biofuels 5:6 (2012).

71. Li J, Ren N, Li B, Qin Z and He J, Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Bioresour Technol 99:6528-6537 (2008).

72. Deanda K, Zhang M, Eddy C and Picataggio S, Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62:4465-4470 (1996).

73. Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT and van Maris AJ, Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 73:4881-4891 (2007).

74. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H and Vavilin V, The IWA anaerobic digestion model no 1(ADM 1). Wat Sci Technol 45:65-73 (2002).

75. Rodriguez J, Lema JM and Kleerebezem R, Energy-based models for environmental biotechnology. Trends in Biotechnology 26:366-374 (2008).

76. Ren N, Wang B and Huang J, Ethanol‐type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng 54:428-433 (1997).

77. Fang HH and Liu H, Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82:87-93 (2002).

78. Hwang MH, Jang NJ, Hyun SH and Kim IS, Anaerobic bio-hydrogen production from ethanol fermentation: The role of pH. J Biotechnol 111:297-309 (2004).

79. Zoetemeyer RJ, Vandenheuvel JC and Cohen A, pH influence on acidogenic dissimilation of glucose in an anaerobic digester. Wat Res 16:303-311 (1982).

80. Horiuchi J, Shimizu T, Tada K, Kanno T and Kobayashi M, Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour Technol 82:209-213 (2002).

81. Wiegel J, Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experen 36:1434-1446 (1980).

82. Stams AJM, Metabolic interactions between anaerobic bacteria in methanogenic environments. Ant van Leeuwen 66:271-294 (1994).

83. Zoetemeyer R, Arnoldy P, Cohen A and Boelhouwer C, Influence of temperature on the anaerobic acidification of glucose in a mixed culture forming part of a two-stage digestion process. Wat Res 16:313-321 (1982).

84. Rodriguez J, Kleerebezem R, Lema JM and van Loosdrecht MCM, Modelling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93:593-606 (2006).

85. Majone M, Aulenta F, Dionisi D, D'Addario EN, Sbardellati R, Bolzonella D and Beccari M, High-rate anaerobic treatment of Fischer–Tropsch wastewater in a packed-bed biofilm reactor. Water Res 44:2745-2752 (2010).

86. Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL and Noike T, Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59-65 (2000).

87. Kalyuzhnyi S and Davlyatshina M, Batch anaerobic digestion of glucose and its mathematical modeling. I. kinetic investigations. Bioresour Technol 59:73-80 (1997).

88. Kalyuzhnyi S, Batch anaerobic digestion of glucose and its mathematical modeling. II. description, verification and application of model. Bioresour Technol 59:249-258 (1997).

89. Cardona CA, Sanchez OJ and Gutierrez LF, Process synthesis for fuel ethanol production. CRC press, Boca Raton, USA, Chapt 5 (2010).

90. Zhao C, Karakashev D, Lu W, Wang H and Angelidaki I, Xylose fermentation to biofuels (hydrogen and ethanol) by extreme thermophilic (70 OC) mixed culture. Int J Hydr Ener 35:3415-3422 (2010).

91. McMillan JD, Xylose fermentation to ethanol: A review. NREL/TP-421-4944, National Renewable Energy Lab, Golden, CO, USA (1993).

92. Rosenberg S, Fermentation of pentose sugars to ethanol and other neutral products by microorganisms. Enz Microb Technol 2:185-193 (1980).

93. Lin CY and Cheng CH, Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int J Hydr Ener 31:832-840 (2006).

94. Lin CY, Wu CC and Hung CH, Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures. Int J Hydr Ener 33:43-50 (2008).

95. Calli B, Schoenmaekers K and van broekhoven KLD. Dark fermentative H2 production from xylose and lactose-effects of on-line pH control. Int J Hydr Ener 32:522-530 (2008).

96. Lo YC, Chen WM, Hung CH, Chen SD and Chang JS, Dark H2 fermentation from sucrose and xylose using H2 producing indigenous bacteria: Feasibility and kinetic studies. Wat Res 42:827-842 (2008).

97. Temudo MF, Mato T, Kleerebezem R and van Loosdrecht MC, Xylose anaerobic conversion by open-mixed cultures. Appl Microbiol Biotechnol 82:231-239 (2009).

98. Ohta K, Beall D, Mejia J, Shanmugam K and Ingram L, Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810-2815 (1991).

99. Yomano L, York S, Zhou S, Shanmugam K and Ingram L, Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30:2097-2103 (2008).

100. Liu S, Nichols NN, Dien BS and Cotta MA. Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production. J Ind Microbiol Biotechnol 33:1-7 (2006).

101. Hahn-Hägerdal B, Wahlbom CF, Gárdonyi M, van Zyl WH, Otero RRC and Jönsson LJ, Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Springer, 53-84 (2001).

102. Haruta S, Cui Z, Huang Z, Li M, Ishii M and Igarashi Y. Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 59:529-534 (2002).

103. Brethauer S and Studer MH. Consolidated bioprocessing of lignocellulose by a microbial consortium. Ener Environ Sci 7:1446-1453 (2014).

104. Olson DG, McBride JE, Joe Shaw A and Lynd LR. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396-405 (2012).

105. Esteghlalian A, Hashimoto AG, Fenske JJ and Penner MH, Modelling and optimization of the dilute sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Biores Technol 59:129-136 (1997).

106. Sun Y and Cheng J, Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour Technol 83:1-11 (2002).

107. Sun R, Lawther JM and Banks W, Fractional and structural characterization of wheat straw hemicelluloses. Carbohydr Polym 29:325-331 (1996).

108. Hamelinck CN, van Hooijdonk G and Faaij APC, Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biom Bioener 28:384-410 (2005).

109. Galbe M and Zacchi G, Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels, Springer, Berlin, 41-65 (2007).

110. Timell TE. Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45-70 (1967).

111. Shiralipour A and Smith PH, Conversion of biomass into methane gas. Biom 6:85-92 (1984).

112. Badger D, Bogue M and Stewart D, Biogas production from crops and organic wastes. 1. results of batch digestions. New Zeal J Sci 22:11-20 (1979).

113. Chynoweth D, Turick C, Owens J, Jerger D and Peck M, Biochemical methane potential of biomass and waste feedstocks. Biom Bioener 5:95-111 (1993).

114. Forney LJ and Reddy CA, Bacterial degradation of kraft lignin. Devel Ind Microbiol 20:163-175 (1980).

115. Odier E, Janin G and Monties B, Poplar lignin decomposition by gram-negative aerobic bacteria. Appl Environ Microbiol 41:337-341 (1981).

116. Giroux H, Vidal P, Bouchard J and Lamy F, Degradation of kraft indulin lignin by Streptomyces viridosporus and Streptomyces badius. Appl Environ Microbiol 54:3064-3070 (1988).

117. Horwath W and Elliott LF, Ryegrass straw component decomposition during mesophilic and thermophilic incubations. Biol Fert Soils 21:227-232 (1996).

118. Waksam SA, Cordon T and Hulpoi N, Influence of temperature upon the microbiological population and decomposition processes in composts of stable manure. Soil Sci 47:83-114 (1939).

119. Franzluebbers A, Arshad M and Ripmeester J, Alterations in canola residue composition during decomposition. Soil Biol Biochem 28:1289-1295 (1996).

120. Robinson CH, Dighton J, Frankland JC and Roberts J, Fungal communities on decaying wheat straw of different resource qualities. Soil Biol Biochem 26:1053-1058 (1994).

121. Tuomela M, Hatakka A, Raiskila S, Vikman M and Itävaara M, Biodegradation of radiolabelled synthetic lignin (14C-DHP) and mechanical pulp in a compost environment. Appl Microbiol Biotechnol 55:492-499 (2001).

122. Jouraiphy A, Amir S, El Gharous M, Revel J and Hafidi M, Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. Int Biodeterior Biodegrad 56:101-108 (2005).

123. Yu H, Zeng G, Huang H, Xi X, Wang R, Huang D, Huang G and Li J, Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegrad 18:793-802 (2007).

124. Huang D, Zeng G, Feng C, Hu S, Lai C, Zhao M, Su F, Tang L and Liu H, Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting. Bioresour Technol 101:4062-4067 (2010).

125. Tomati U, Galli E, Pasetti L and Volterra E, Bioremediation of olive-mill wastewaters by composting. Was Manag Res 13:509-518 (1995).

126. Hwang SS, Lee SJ, Kim HK, Ka JO, Kim KJ and Song HG, Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi. J Microbiol Biotechnol 18:1819-1826 (2008).

127. Pavlostathis SG, Miller TL and Wolin MJ, Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. Appl Environ Microbiol 54:2655-2659 (1988).

128. Ng T, Weimer P and Zeikus J, Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol 114:1-7 (1977).

129. Desvaux M, Guedon E and Petitdemange H, Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. J Bacteriol 183:119-130 (2001).

130. Weimer P and Zeikus J, Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol 33:289-297 (1977).

131. Scheifinger C and Wolin MJ, Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl Microbiol 26:789-795 (1973).

132. Ng TK, Ben-Bassat A and Zeikus J, Ethanol production by thermophilic bacteria: Fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl Environ Microbiol 41:1337-1343 (1981).

133. Siegert I and Banks C, The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Proc Biochem 40:3412-3418 (2005).

134. Yang Y, Tsukahara K, Yagishita T and Sawayama S, Performance of a fixed-bed reactor packed with carbon felt during anaerobic digestion of cellulose. Bioresour Technol 94:197-201 (2004).

135. O'Sullivan CA, Burrell PC, Clarke WP and Blackall LL, Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnol Bioeng 92:871-878 (2005).

136. Ueno Y, Kawai T, Sato S, Otsuka S and Morimoto M, Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79:395-397 (1995).

137. de Coninck‐Chosson J, Aerobic degradation of cellulose and adsorption properties of cellulases in Cellulomonas uda JC3: Effects of crystallinity of substrate. Biotechnol Bioeng 31:495-501 (1988).

138. Bagnara C, Gaudin C and Belaich JP, Physiological properties of Cellulomonas fermentans, a mesophylic cellulolytic bacterium. Appl Microbiol Biotechnol 26:170-176 (1987).

139. Li X and Gao P, Isolation and partial properties of cellulose-decomposing strain of Cytophaga sp. LX-7 from soil. J Appl Microbiol 82:73-80(1997).

140. Peitersen N. Continuous cultivation of Trichoderma viride on cellulose. Biotechnol Bioeng 19:337-348 (1977).

141. Velkovska S, Marten MR and Ollis DF. Kinetic model for batch cellulase production by Trichoderma reesei RUT C30. J Biotechnol 54:83-94 (1997).

142. Degli-Innocenti F, Tosin M and Bastioli C, Evaluation of the biodegradation of starch and cellulose under controlled composting conditions. J Environ Pol Degrad 6:197-202 (1998).

143. Pagga U, Beimborn D, Boelens J and De Wilde B, Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test. Chemosph 31:4475-4487 (1995).

144. Hurwitz E, Beck A, Sakellariou E and Krup M, Degradation of cellulose by activated sludge treatment. J Wat Poll Contr Fed 33:1070-1075 (1961).

145. Mezzanotte V, Bertani R, Degli Innocenti F and Tosin M, Influence of inocula on the results of biodegradation tests. Polym Degrad Stab 87:51-56 (2005).

146. Bellia G, Tosin M, Floridi G and Degli-Innocenti F, Activated vermiculite, a solid bed for testing biodegradability under composting conditions. Polym Degrad Stab 66:65-79 (1999).

147. Mohee R, Unmar G, Mudhoo A and Khadoo P, Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Was Man 28:1624-1629 (2008).

148. Kato S, Haruta S, Cui ZJ, Ishii M and Igarashi Y, Effective cellulose degradation by a mixed‐culture system composed of a cellulolytic clostridium and aerobic non‐cellulolytic bacteria. FEMS Microbiol Ecol 51:133-142 (2004).

149. Lo YC, Bai MD, Chen WM and Chang JS, Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour Technol 99:8299-8303 (2008).

150. Lynd LR, Grethlein HE and Wolkin RH, Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl Environ Microbiol 55:3131-3139 (1989).

151. Yang B and Wyman CE, BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611-617 (2006).

152. Huang X and Penner MH, Apparent substrate inhibition of the Trichoderma reseei cellulase system. J Agric Food Chem 39:2096-2100 (1991).

153. Yang B, Willies DM and Wyman CE, Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol Bioeng 94:1122-1128 (2006).

154. Claassen P, Van Lier J, Lopez Contreras A, Van Niel E, Sijtsma L, Stams A, De Vries S and Weusthuis R, Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741-755 (1999).

155. Kádár Z, Szengyel Z and Réczey K, Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod 20:103-110 (2004).

156. Bullock G, Ethanol from sugarcane. Sugar Research Institute, Australia (2002).

157. South C, Hogsett D and Lynd L, Continuous fermentation of cellulosic biomass to ethanol. Appl Biochem Biotechnol 39:587-600 (1993).

158. Zeikus J, Chemical and fuel production by anaerobic bacteria. Ann Rev Microbiol 34:423-464 (1980).

159. Schink B, Phelps TJ, Eichler B and Zeikus JG, Comparison of ethanol degradation pathways in anoxic freshwater environments. J Gen Microbiol 131:651-660 (1985).

160. Beall D and Ingram L, Genetic engineering of soft-rot bacteria for ethanol production from lignocellulose. J Ind Microbiol 11:151-155 (1993).

161. Nichols NN, Dien BS and Bothast RJ, Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis. J Ind Microbiol Biotechnol 30:315-321 (2003).

162. Burchhardt G, Ingram L, Conversion of xylan to ethanol by ethanologenic strains of Escherichia coli and Klebsiella oxytoca. Appl Environ Microbiol 58:1128-1133 (1992).

163. Govindaswamy S and Vane LM, Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Bioresour Technol 98:677-685 (2007).

164. Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K and Sawayama S, Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP -dependent xylitol dehydrogenase gene. Appl Environ Microbiol 75:3818-3822 (2009).

165. Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH and Jin YS, Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108:504-509 (2011).

166. Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A, Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol 82:1037-1047 (2009).




Directory: bitstream -> 2164
bitstream -> Images of Fairfax in Modern Literature and Film Andrew Hopper
bitstream -> Amphitheater High School’s Outdoor Classroom: a study in the Application of Design
bitstream -> Ethics of Climate Change: Adopting an Empirical Approach to Moral Concern
bitstream -> The Age of Revolution in the Indian Ocean, Bay of Bengal and South China Sea: a maritime Perspective
bitstream -> Methodism and Culture
bitstream -> Review of coastal ecosystem management to improve the health and resilience of the Great Barrier Reef World Heritage Area
bitstream -> Present state of the area
2164 -> The bilingual race /And truth of that water’: Seamus Heaney and the Irish Language
2164 -> After the British World
2164 -> Towards a framework for the quantitative assessment of trawling impact on the seabed and benthic ecosystem

Download 369.99 Kb.

Share with your friends:
1   2   3   4   5




The database is protected by copyright ©ininet.org 2024
send message

    Main page